A central challenge in semantic parsing is handling the myriad ways in which knowledge base predicates can be expressed. Traditionally, semantic parsers are trained primarily from text paired with knowledge base information. Our goal is to exploit the much larger amounts of raw text not tied to any knowledge base. In this paper, we turn semantic parsing on its head. Given an input utterance, we first use a simple method to deterministically generate a set of candidate logical forms with a canonical realization in natural language for each. Then, we use a paraphrase model to choose the realization that best paraphrases the input, and output the corresponding logical form. We present two simple paraphrase models, an association model and a vector space model, and train them jointly from question-answer pairs. Our system PARASEMPRE improves stateof-the-art accuracies on two recently released question-answering datasets.
Answering complex questions is a timeconsuming activity for humans that requires reasoning and integration of information. Recent work on reading comprehension made headway in answering simple questions, but tackling complex questions is still an ongoing research challenge. Conversely, semantic parsers have been successful at handling compositionality, but only when the information resides in a target knowledge-base. In this paper, we present a novel framework for answering broad and complex questions, assuming answering simple questions is possible using a search engine and a reading comprehension model. We propose to decompose complex questions into a sequence of simple questions, and compute the final answer from the sequence of answers. To illustrate the viability of our approach, we create a new dataset of complex questions, COMPLEXWEBQUES-TIONS, and present a model that decomposes questions and interacts with the web to compute an answer. We empirically demonstrate that question decomposition improves performance from 20.8 precision@1 to 27.5 preci-sion@1 on this new dataset.71
How do we build a semantic parser in a new domain starting with zero training examples? We introduce a new methodology for this setting: First, we use a simple grammar to generate logical forms paired with canonical utterances. The logical forms are meant to cover the desired set of compositional operators, and the canonical utterances are meant to capture the meaning of the logical forms (although clumsily). We then use crowdsourcing to paraphrase these canonical utterances into natural utterances. The resulting data is used to train the semantic parser. We further study the role of compositionality in the resulting paraphrases. Finally, we test our methodology on seven domains and show that we can build an adequate semantic parser in just a few hours.
Harnessing the statistical power of neural networks to perform language understanding and symbolic reasoning is difficult, when it requires executing efficient discrete operations against a large knowledge-base. In this work, we introduce a Neural Symbolic Machine (NSM), which contains (a) a neural "programmer", i.e., a sequence-to-sequence model that maps language utterances to programs and utilizes a key-variable memory to handle compositionality (b) a symbolic "computer", i.e., a Lisp interpreter that performs program execution, and helps find good programs by pruning the search space. We apply REINFORCE to directly optimize the task reward of this structured prediction problem. To train with weak supervision and improve the stability of REINFORCE we augment it with an iterative maximum-likelihood training process. NSM outperforms the state-of-theart on the WEBQUESTIONSSP dataset when trained from question-answer pairs only, without requiring any feature engineering or domain-specific knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.