Ground plots, airborne profiling and space lidar (light detection and ranging) measurements of canopy height and crown closure, space radar topographic data, a Landsat cover type map, and a vegetation zone map were used in a model-assisted, two-phase sampling design to estimate the aboveground biomass and carbon resources of Quebec. It was determined that a simple random sampling estimator, with covariance terms added, could be used to quantify the variability of regional Geoscience Laser Altimeter System (GLAS) biomass estimates where interorbit distances are, on average, ≥15 km apart. Prediction error increased standard errors, on average, 24.4%, 4.6%, and 2.8% at the cover type, vegetation zone, and provincial levels, respectively. Inclusion of the covariance term in the calculation of grouped cover type variances increased the vegetation zone standard errors up to 3.7 times and the provincial standard errors 15.6 times. In the southern commercial forests of Quebec, GLAS underestimated ground-based biomass values by 7.3% (stratified linear model) and 10.2% (nonstratified linear model). Quebec forests support 2.57 ± 0.33 gigatonnes of carbon (nonstratified linear model). Approximately 25% of that carbon was found to be located in two southern vegetation zones (northern hardwood and mixedwood), another 25% in two northern vegetation zones (taiga and treed tundra), and the remaining 50% in the boreal zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.