SummaryMultiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.
Despite intense research, treatment options for patients with mesothelioma are limited and offer only modest survival advantage. We screened a large panel of compounds in multiple mesothelioma models and correlated sensitivity with a range of molecular features to detect biomarkers of drug response. We utilized a high-throughput chemical inhibitor screen in a panel of 889 cancer cell lines, including both immortalized and primary early-passage mesothelioma lines, alongside comprehensive molecular characterization using Illumina whole-exome sequencing, copy-number analysis and Affymetrix array whole transcriptome profiling. Subsequent validation was done using functional assays such as siRNA silencing and mesothelioma mouse xenograft models. A subgroup of immortalized and primary MPM lines appeared highly sensitive to FGFR inhibition. None of these lines harbored genomic alterations of FGFR family members, but rather BAP1 protein loss was associated with enhanced sensitivity to FGFR inhibition. This was confirmed in an MPM mouse xenograft model and by BAP1 knockdown and overexpression in cell line models. Gene expression analyses revealed an association between BAP1 loss and increased expression of the receptors FGFR1/3 and ligands FGF9/18. BAP1 loss was associated with activation of MAPK signaling. These associations were confirmed in a cohort of MPM patient samples. A subgroup of mesotheliomas cell lines harbor sensitivity to FGFR inhibition. BAP1 protein loss enriches for this subgroup and could serve as a potential biomarker to select patients for FGFR inhibitor treatment. These data identify a clinically relevant MPM subgroup for consideration of FGFR therapeutics in future clinical studies. .
Cancer hallmarks are evolutionary traits required by a tumour to develop. While extensively characterised, the way these traits are achieved through the accumulation of somatic mutations in key biological pathways is not fully understood. To shed light on this subject, we characterised the landscape of pathway alterations associated with somatic mutations observed in 4,415 patients across ten cancer types, using 374 orthogonal pathway gene-sets mapped onto canonical cancer hallmarks. Towards this end, we developed SLAPenrich: a computational method based on population-level statistics, freely available as an open source R package. Assembling the identified pathway alterations into sets of hallmark signatures allowed us to connect somatic mutations to clinically interpretable cancer mechanisms. Further, we explored the heterogeneity of these signatures, in terms of ratio of altered pathways associated with each individual hallmark, assuming that this is reflective of the extent of selective advantage provided to the cancer type under consideration. Our analysis revealed the predominance of certain hallmarks in specific cancer types, thus suggesting different evolutionary trajectories across cancer lineages. Finally, although many pathway alteration enrichments are guided by somatic mutations in frequently altered high-confidence cancer genes, excluding these driver mutations preserves the hallmark heterogeneity signatures, thus the detected hallmarks’ predominance across cancer types. As a consequence, we propose the hallmark signatures as a ground truth to characterise tails of infrequent genomic alterations and identify potential novel cancer driver genes and networks.
Drug resistance is an almost inevitable consequence of cancer therapy and ultimately proves fatal for the majority of patients. In many cases, this is the consequence of specific gene mutations that have the potential to be targeted to resensitize the tumor. The ability to uniformly saturate the genome with point mutations without chromosome or nucleotide sequence context bias would open the door to identify all putative drug resistance mutations in cancer models. Here, we describe such a method for elucidating drug resistance mechanisms using genome-wide chemical mutagenesis allied to next-generation sequencing. We show that chemically mutagenizing the genome of cancer cells dramatically increases the number of drug-resistant clones and allows the detection of both known and novel drug resistance mutations. We used an efficient computational process that allows for the rapid identification of involved pathways and druggable targets. Such a priori knowledge would greatly empower serial monitoring strategies for drug resistance in the clinic as well as the development of trials for drug-resistant patients.
Cancer hallmarks are evolutionary traits required by a tumour to develop. While extensively characterised, the way these traits are achieved through the accumulation of somatic mutations in key biological pathways is not fully understood. To shed light on this subject, we characterised the landscape of pathway alterations associated with somatic mutations observed in 4,415 patients across ten cancer types, using 374 orthogonal pathway gene-sets mapped onto canonical cancer hallmarks. Towards this end, we developed SLAPenrich: a computational method based on population-level statistics, freely available as an open source R package. Assembling the identified pathway alterations into sets of hallmark signatures allowed us to connect somatic mutations to clinically interpretable cancer mechanisms. Further, we explored the heterogeneity of these signatures, in terms of ratio of altered pathways associated with each individual hallmark, assuming that this is reflective of the extent of selective advantage provided to the cancer type under consideration. Our analysis revealed the predominance of certain hallmarks in specific cancer types, thus suggesting different evolutionary trajectories across cancer lineages. Finally, although many pathway alteration enrichments are guided by somatic mutations in frequently altered high-confidence cancer genes, excluding these driver mutations preserves the hallmark heterogeneity signatures, thus the detected hallmarks' predominance across cancer types. As a consequence, we propose the hallmark signatures as a ground truth to characterise tails of infrequent genomic alterations and identify potential novel cancer driver genes and networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.