Abstract-Exploration of unknown environments is an important aspect to fielding teams of robots. Without the ability to determine on their own where to go in the environment, the full potential of robotic teams is limited to the abilities of human operators to deploy them for search and rescue, mapping, or other tasks that are predicated on gaining knowledge from the environment. This is of particular importance in realworld 3-Dimensional (3-D) environments where simple planar assumptions can lead to incomplete exploration, for example, real-world environments have areas underneath overhangs or inside caves. As an additional challenge, when the teams of robots have vastly different capabilities, the planning system must take those into account to efficiently utilize the available assets. In this paper, we present a combined air-ground system for conducting 3-D exploration in cluttered environments. We first describe the hardware and software components of the system. We then present our algorithm for planning 3-D goal locations for a heterogeneous team of robots to efficiently explore a previously unknown environment and demonstrate its applicability in real-world experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.