Peroxisome proliferator-activated receptor-delta (PPAR-δ), one of three members of the PPAR group in the nuclear receptor superfamily, is a ligand-activated transcription factor. PPAR-δ regulates important cellular metabolic functions that contribute to maintaining energy balance. PPAR-δ is especially important in regulating fatty acid uptake, transport, and β-oxidation as well as insulin secretion and sensitivity. These salutary PPAR-δ functions in normal cells are thought to protect against metabolic-syndrome-related diseases, such as obesity, dyslipidemia, insulin resistance/type 2 diabetes, hepatosteatosis, and atherosclerosis. Given the high clinical burden these diseases pose, highly selective synthetic activating ligands of PPAR-δ were developed as potential preventive/therapeutic agents. Some of these compounds showed some efficacy in clinical trials focused on metabolic-syndrome-related conditions. However, the clinical development of PPAR-δ agonists was halted because various lines of evidence demonstrated that cancer cells upregulated PPAR-δ expression/activity as a defense mechanism against nutritional deprivation and energy stresses, improving their survival and promoting cancer progression. This review discusses the complex relationship between PPAR-δ in health and disease and highlights our current knowledge regarding the different roles that PPAR-δ plays in metabolism, inflammation, and cancer.
Familiar clustering of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) has been frequently reported. However, limited information is available about the underlying molecular mechanisms in HBV-related HCC patients with family history of HCC. In our previous study, Agilent miRNA Base 16.0 microarray showed miRNA profiles of the plasma of HBV-related HCC patients who had a family history of HCC. This study aims to explore the expression, function, and mechanisms of miR-3188 in HCC that might provide novel insights into the role of family history on the risk of HCC. The expression levels of miR-3188 were markedly overexpressed in HCC tissues, HBV transgenic mice, and HepG2.215 cells. We knocked out miR-3188 in HCC cell lines using the CRISPR/Cas9 system, and demonstrated that miR-3188 knockout (KO) suppressed cell growth, migration, and invasion, and inhibited xenografts tumor growth in nude mice. Next, we determined that miR-3188 KO exerts antitumor functions by directly repressing ZHX2. It has been reported that HBV X protein (HBx) plays a critical role in HBV-related HCC, promoting CREB-mediated activation of miR-3188 and activation of Notch signaling through repressing ZHX2. Finally, we verified that ZHX2 functions as a transcriptional repressor to Notch1 via interaction with NF-YA. Our data demonstrate that the HBx–miR-3188–ZHX2-Notch1 signaling pathway plays an important role in the pathogenesis and progression of HBV-related HCC with family history of HCC. These findings have important implications for identifying new therapeutic targets in HBV-related HCC.
Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.
APC mutations activate aberrant b-catenin signaling to drive initiation of colorectal cancer; however, colorectal cancer progression requires additional molecular mechanisms. PPAR-delta (PPARD), a downstream target of b-catenin, is upregulated in colorectal cancer. However, promotion of intestinal tumorigenesis following deletion of PPARD in Apc min mice has raised questions about the effects of PPARD on aberrant b-catenin activation and colorectal cancer. In this study, we used mouse models of PPARD overexpression or deletion combined with APC mutation (Apc D580 ) in intestinal epithelial cells (IEC) to elucidate the contributions of PPARD in colorectal cancer. Overexpression or deletion of PPARD in IEC augmented or suppressed b-catenin activation via up-or downregulation of BMP7/TAK1 signaling and strongly promoted or suppressed colorectal cancer, respectively. Depletion of PPARD in human colorectal cancer organoid cells inhibited BMP7/ b-catenin signaling and suppressed organoid self-renewal.Treatment with PPARD agonist GW501516 enhanced colorectal cancer tumorigenesis in Apc D580 mice, whereas treatment with PPARD antagonist GSK3787 suppressed tumorigenesis. PPARD expression was significantly higher in human colorectal cancer-invasive fronts versus their paired tumor centers and adenomas. Reverse-phase protein microarray and validation studies identified PPARDmediated upregulation of other proinvasive pathways: connexin 43, PDGFRb, AKT1, EIF4G1, and CDK1. Our data demonstrate that PPARD strongly potentiates multiple tumorigenic pathways to promote colorectal cancer progression and invasiveness.Significance: These findings address long-standing, important, and unresolved questions related to the potential role of PPARD in APC mutation-dependent colorectal tumorigenesis by showing PPARD activation enhances APC mutation-dependent tumorigenesis.
Mounting evidence supports a mechanistic link between inflammation and cancer, especially colon cancer. ALOX15 (15-lipoxygenase-1) plays an important role in the formation of key lipid mediators (e.g., lipoxins and resolvins) to terminate inflammation. ALOX15 expression is downregulated in colorectal cancer (CRC). Intestinally-targeted transgenic expression of ALOX15 in mice inhibited dextran sodium sulfate-induced colitis from promoting azoxymethane- induced colorectal tumorigenesis, demonstrating that ALOX15 can suppress inflammation-driven promotion of carcinogen-induced colorectal tumorigenesis and therefore ALOX15 downregulation during tumorigenesis is likely to enhance the link between colitis and colorectal tumorigenesis. ALOX15 suppressed the TNF-α, IL-1β/NF-κB, and IL-6/STAT3 signaling pathways, which play major roles in promotion of colorectal cancer by chronic inflammation. Defining ALOX15’s regulatory role in colitis-associated colorectal cancer could identify important molecular regulatory events that could be targeted to suppress promotion of tumorigenesis by chronic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.