The spatial organization of various cell types within the tissue microenvironment is a key element for the formation of physiological and pathological processes, including cancer and autoimmune diseases. Here, we present S3-CIMA, a weakly supervised convolutional neural network model that enables the detection of disease-specific microenvironment compositions from high-dimensional proteomic imaging data. We demonstrate the utility of this approach by determining cancer outcome- and cellular signaling-specific spatial cell state compositions in highly multiplexed fluorescence microscopy data of the tumor microenvironment in colorectal cancer. Moreover, we use S3-CIMA to identify disease onset-specific changes of the pancreatic tissue microenvironment in type 1 diabetes using imaging mass cytometry data. We evaluated S3-CIMA as a powerful tool to discover novel disease-associated spatial cellular interactions from currently available and future spatial biology datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.