Post‐earthquake damage reports have continuously highlighted the significant vulnerability of nonstructural elements to seismic events. Nonstructural damage has severe impact in the building recovery, increasing the socioeconomic losses even for low intensity events. In the last few years, research efforts have focused on the development of innovative nonstructural solutions, to be combined with damage‐resistant structural skeletons in order to obtain an overall high‐performance building. As part of a European Union (EU)‐funded project, the effectiveness of such integrated skeleton&envelope low‐damage system in reducing the earthquake related losses was investigated. Tridimensional shake table tests on a 1:2 scaled timber‐concrete low‐damage structural skeleton, “dressed” by different innovative nonstructural elements (glass/concrete facades, gypsum/masonry partitions), were performed at the National Laboratory for Civil Engineering (LNEC) in Lisbon, Portugal. The shake table tests were carried out at increasing seismic intensities to investigate the structural and nonstructural performance up to a higher‐than Collapse Prevention Limit State according to the Italian Code (975 years return period). This paper focuses on the dynamic behavior of nonstructural elements with detailed discussion on construction detailing, seismic demand and performance of the innovative solutions. The high performance of nonstructural elements proved the potential of the details introduced in the partitions/facades. Minimal or no damage was observed up to the end of the overall testing sequence, which reached moderate‐to‐high interstory drift ratios (more than 1.00%) ‐ typically expected to cause severe damage to traditional nonstructural partitions/infills/facades.
In recent years, the growing need for reducing non-structural damage after earthquakes has stimulated a dedicated effort to develop innovative types of fasteners for anchoring non-structural components (NSCs) to reinforced concrete (RC) host-structures. To contribute to such need, and building on previous research, this paper presents the results of a series of uni-directional shake-table tests of simulated NSCs anchored to concrete via: (1) expansion, and (2) chemical anchors; post-installed into: (a) uncracked, and (b) cracked concrete. Considering different construction details, the experimental investigation focused on traditional anchorage systems, alternative solutions comprising mortar filling into the gap clearance, and a low-damage system relying on supplemental damping devices, capable of reducing the acceleration of the NSCs as well as the force of the anchorage during seismic shakings. The experimental tests provided significant evidence on the beneficial effects of a dissipative anchorage protecting both the non-structural component and the anchorage itself, even during strong earthquakes. Moreover, when construction details allow to close the fixture clearance with a mortar filling, this stiffer solution provide an additional reduction of NSCs seismic accelerations and forces. Therefore, suggestions for further improvements of the adopted low-damage solution are also proposed.
Innovative damage-mitigation technologies have been recently developed to improve the seismic performance of structural and non-structural elements. The combination of these solutions can lead to a high-performance and cost-efficient building system, capable of sustaining earthquakes with limited damage and reduced socio-economic losses. This article investigates the convenience of implementing damage-control solutions through a cost/performance-based evaluation of multi-story-reinforced concrete buildings, comprising alternative combinations of traditional vs low-damage technologies for both structural skeletons (frames, walls) and non-structural elements (heavy/light facades, heavy/light partitions, suspended ceilings). The significant benefits of the innovative systems are investigated through loss assessment studies, implemented using a practical approach based on numerical pushover analyses and the capacity spectrum method. The parametric analyses confirm that the integrated low-damage structural/non-structural system can lead to significant savings, in these specific cases, in the range of 150–300 €/m2 during the 50-year building-life and downtime reductions at ultimate limit state in the order of 2–7 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.