Rheumatic heart disease (RHD) remains an important global health challenge. Administration of benzathine penicillin (BPG) every 3 to 4 weeks is recommended as a secondary prophylaxis to prevent recurrent episodes of acute rheumatic fever and subsequent RHD. Following intramuscular injection, BPG is hydrolyzed to penicillin G (benzylpenicillin). However, little is known of the pharmacokinetics (PK) of BPG in pediatric populations at high risk of RHD or of the pharmacokinetic-pharmacodynamic relationship between penicillin exposure and clinically relevant outcomes. Dried blood spot (DBS) assays can facilitate PK studies in situations where frequent venous blood sampling is logistically difficult. A liquid chromatography-mass spectroscopy assay for penicillin G in plasma and DBS was developed and validated. Application of the DBS assay for PK studies was confirmed using samples from adult patients receiving penicillin as part of an infection management plan. The limit of quantification for penicillin G in DBS was 0.005 mg/liter. Penicillin G is stable in DBS for approximately 12 h at room temperature (22°C), 6 days at 4°C, and Ͼ1 month at Ϫ20°C. Plasma and DBS penicillin G concentrations for patients receiving BPG and penicillin G given via bolus doses correlated well and had comparable time-concentration profiles. There was poor correlation for patients receiving penicillin via continuous infusions, perhaps as a result of the presence of residual penicillin in the peripherally inserted central catheter, from which the plasma samples were collected. The present DBS penicillin G assay can be used as a surrogate for plasma concentrations to provide valid PK data for studies of BPG and other penicillin preparations developed to prevent rheumatic fever and RHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.