The biological diversity of our planet is being depleted due to the direct and indirect consequences of human activity. As the size of animal and plant populations decrease, loss of genetic diversity reduces their ability to adapt to changes in the environment, with inbreeding depression an inevitable consequence for many species. This textbook provides a clear and comprehensive introduction to the importance of genetic studies in conservation. The text is presented in an easy-to-follow format with main points and terms clearly highlighted. Each chapter concludes with a concise summary, which, together with worked examples and problems and answers, emphasise the key principles covered. Text boxes containing interesting case studies and other additional information enrich the content throughout, and over 100 beautiful pen and ink portraits of endangered species help bring the material to life.
Fragmentation of animal and plant populations typically leads to genetic erosion and increased probability of extirpation. Although these effects can usually be reversed by re-establishing gene flow between population fragments, managers sometimes fail to do so due to fears of outbreeding depression (OD). Rapid development of OD is due primarily to adaptive differentiation from selection or fixation of chromosomal variants. Fixed chromosomal variants can be detected empirically. We used an extended form of the breeders' equation to predict the probability of OD due to adaptive differentiation between recently isolated population fragments as a function of intensity of selection, genetic diversity, effective population sizes, and generations of isolation. Empirical data indicated that populations in similar environments had not developed OD even after thousands of generations of isolation. To predict the probability of OD, we developed a decision tree that was based on the four variables from the breeders' equation, taxonomic status, and gene flow within the last 500 years. The predicted probability of OD in crosses between two populations is elevated when the populations have at least one of the following characteristics: are distinct species, have fixed chromosomal differences, exchanged no genes in the last 500 years, or inhabit different environments. Conversely, the predicted probability of OD in crosses between two populations of the same species is low for populations with the same karyotype, isolated for <500 years, and that occupy similar environments. In the former case, we recommend crossing be avoided or tried on a limited, experimental basis. In the latter case, crossing can be carried out with low probability of OD. We used crosses with known results to test the decision tree and found that it correctly identified cases where OD occurred. Current concerns about OD in recently fragmented populations are almost certainly excessive.
The costs of inbreeding in natural populations of mammals are unknown despite their theoretical importance in genetic and sociobiological models and practical applications in conservation biology. A major cost of inbreeding is the reduced survival of inbred young. We estimate this cost from the regression of juvenile survival on the inbreeding coefficient using pedigrees of 40 captive mammalian populations belonging to 38 species.The number of lethal equivalents rangedfiom -1.4 to 30.3, with a mean of 4.6 and a median of 3.1. There was no significant difference between populations founded with wild-caught individuuIs, a mixture of wild-caught and captive-born individuals, and individuals of unknown origin. The average cost of aparent-offspring or full sibling mating was 0.33, that is, mortality was 33% higher in offspring of such matings than in offspring of unre/atedparents. This is likely to be an underestimate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.