Objectives-Functional MRI (fMRI) holds the promise of non-invasive mapping of human brain function in both health and disease. Yet its sensitivity and reliability for mapping higher cognitive function are still being determined. Using verbal fluency as a task, the objective was to ascertain the consistency of fMRI on a conventional scanner for determining the anatomic substrate of language between subjects and between sexes. Comparison was made with previous PET studies. Methods-Using a 1.5 Tesla magnet and an echoplanar pulse sequence, whole brain fMRI was obtained from 12 normal right handed subjects (6 males and 6 females) as they performed a verbal fluency task. However, decremental responses were seen over a much larger area of the posterior cortex than had been anticipated by prior studies. The ability to see a response in each subject individually suggests that fMRI may be useful in the preinterventional mapping of pathological states, and oVers a non-invasive alternative to the Wada test for assessment of hemispheric dominance. There were no gross diVerences in the pattern of activation between male and female subjects. (J Neurol Neurosurg Psychiatry 1998;64:492-498)
Bilateral decreases in striatal 11C-raclopride binding were observed in adult female baboons with high resolution PET following administration of drugs that act centrally on dopaminergic neurons. At baseline and following administration of d-amphetamine (a dopamine-releasing drug), GBR-12909 (a potent dopamine reuptake inhibitor), or tetrabenazine (a biogenic amine depleting drug) PET scans of 11C-raclopride binding were obtained in a CTI 931 positron tomograph. In all studies, the ratio of the distribution volumes for the striatum to the cerebellum for 11C-raclopride binding decreased significantly by an average of 16.2% for d-amphetamine, 22.1% for GBR-12909, and 28.3% for tetrabenazine while there were no significant changes observed in the cerebellum or in the rate of systemic metabolism of the radiotracer. These decreases exceed the test/retest variability of striatal 11C-raclopride binding measured in the same animals under identical experimental conditions (Dewey et al., 1992b). Together these studies demonstrate that PET measurements of striatal 11C-raclopride binding can be used to indirectly and non-invasively monitor changes in synaptic dopamine concentrations that result from a variety of neurophysiologic mechanisms.
Cocaine's addictive liability has been linked to its pharmacologic actions on mesotelencephalic dopamine (DA) reinforcement/reward pathways in the central nervous system (CNS). Dopaminergic transmission within these pathways is modulated by gamma-aminobutyric acid (GABA). With this knowledge, we examined the utility of gamma vinylGABA (GVG), a selective and irreversible inhibitor of GABA-transaminase (GABA-T) known to potentiate GABAergic inhibition, to alter cocaine's biochemical effects as well as its effects on behaviors associated with these biochemical changes. GVG significantly attenuated cocaine-induced increases in neostriatal synaptic DA in the non-human primate (baboon) brain as assessed by positron emission tomography (PET) and abolished both the expression and acquisition of cocaine-induced conditioned place preference (CPP). It had no effect on CPP for a food reward, the delivery of cocaine to the brain or locomotor activity. These findings suggest the possible therapeutic utility in cocaine addiction of a pharmacologic strategy targeted at the GABAergic neurotransmitter system, a system distinct from but functionally linked to the DA mesotelencephalic reward/reinforcement system. However, rather than targeting the GABA receptor complex with a direct GABA agonist, this novel approach with GVG takes advantage of the prolonged effects of an irreversible enzyme inhibitor that raises endogenous GABA levels without the addictive liability associated with GABA agonists acting directly at the receptor itself. Human trials with GVG are currently being developed to directly examine the utility of this novel strategy for the treatment of cocaine addiction.
Extensive neuroanatomical, neurophysiological, and behavioral evidence demonstrates that GABAergic neurons inhibit endogenous dopamine release in the mammalian corpus striatum. Positron emission tomography (PET) studies in adult female baboons, using the dopamine D2-specific radiotracer 11C-raclopride, were undertaken to assess the utility of this imaging technique for measuring these dynamic interactions in vivo. 11C-raclopride binding was imaged prior to and following the administration of either gamma-vinyl-GABA (GVG), a specific suicide inhibitor of the GABA-catabolizing enzyme GABA transaminase, or lorazepam, a clinically prescribed benzodiazepine agonist. Striatal 11C-raclopride binding increased following both GVG and lorazepam administration. This increase exceeded the test/retest variability of 11C-raclopride binding observed in the same animals. These findings confirm that changes in endogenous dopamine concentrations resulting from drug-induced potentiation of GABAergic transmission can be measured with PET and 11C-raclopride. Finally, this new strategy for noninvasively evaluating the functional integrity of neurophysiologically linked transmitter systems with PET supports its use as an approach for assessing the multiple mechanisms of drug action and their consequences in the human brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.