Cocaine's addictive liability has been linked to its pharmacologic actions on mesotelencephalic dopamine (DA) reinforcement/reward pathways in the central nervous system (CNS). Dopaminergic transmission within these pathways is modulated by gamma-aminobutyric acid (GABA). With this knowledge, we examined the utility of gamma vinylGABA (GVG), a selective and irreversible inhibitor of GABA-transaminase (GABA-T) known to potentiate GABAergic inhibition, to alter cocaine's biochemical effects as well as its effects on behaviors associated with these biochemical changes. GVG significantly attenuated cocaine-induced increases in neostriatal synaptic DA in the non-human primate (baboon) brain as assessed by positron emission tomography (PET) and abolished both the expression and acquisition of cocaine-induced conditioned place preference (CPP). It had no effect on CPP for a food reward, the delivery of cocaine to the brain or locomotor activity. These findings suggest the possible therapeutic utility in cocaine addiction of a pharmacologic strategy targeted at the GABAergic neurotransmitter system, a system distinct from but functionally linked to the DA mesotelencephalic reward/reinforcement system. However, rather than targeting the GABA receptor complex with a direct GABA agonist, this novel approach with GVG takes advantage of the prolonged effects of an irreversible enzyme inhibitor that raises endogenous GABA levels without the addictive liability associated with GABA agonists acting directly at the receptor itself. Human trials with GVG are currently being developed to directly examine the utility of this novel strategy for the treatment of cocaine addiction.
Cocaine-induced increases in extracellular dopamine (DA) concentrations were measured using in vivo microdialysis techniques in the nucleus accumbens (NACC) of freely moving rats. In control animals, cocaine increased extracellular DA concentrations approximately 482% 60 min following administration, returning to baseline values 200 min later. When administered 2 h following an acute dose of gamma-vinyl-GABA (GVG, Vigabatrin), cocaine-induced increases in extracellular DA were reduced to approximately 365% of baseline values. Chronic GVG administration further dose-dependently attenuated the effects of cocaine but did not alter the rate of increase or the rate of return to baseline values. These results indicate that GVG, a drug that increases brain GABA concentrations, is effective in attenuating the effect of cocaine on NACC DA. Taken with our earlier findings, these results support the targeting of brain GABAergic systems as a potentially effective pharmacologic treatment strategy for cocaine addiction.
Though the blockade of dopamine transporters (DAT) is associated with cocaine's and methylphenidate's reinforcing effects, it is the stimulation of dopamine (DA) receptors, achieved by increases in synaptic DA, that enables these effects to occur. Positron emission tomography (PET) and [11C]raclopride were used to assess the levels of occupancy of DA D2 receptors by dopamine achieved by doses of cocaine or methylphenidate previously documented to block over 70% of DAT. Studies were performed in five baboons using a paired scan protocol designed to measure DA D2 receptor availability (Bmax/Kd) at baseline conditions and after intravenous administration of either cocaine or methylphenidate. Cocaine (1-2 mg/kg) or methylphenidate (0.5 mg/kg) administered 5 min prior to [11C]raclopride decreased Bmax/Kd by 29+/-3% and 32 + 4%, respectively. Smaller reductions in Bmax/Kd (13% for cocaine given 30 min before [11C]raclopride and 25+/-10% for methylphenidate given 40 min before [11C]raclopride) were seen with longer periods between drug and radioligand. These observations are consistent with the slower striatal clearance kinetics of [11C]methylphenidate than [1C]cocaine observed in previous PET experiments and with the approximately twofold higher potency of methylphenidate than cocaine in in vitro experiments. Though the elevation of synaptic DA induced by >70% occupancy of DAT by these drugs lead to a modest increase in occupancy of D2 receptors (25-30%), further studies are required to assess if this is an underestimation because of differences in D2 receptor binding kinetics between raclopride and DA.
Previously, we demonstrated that gamma vinyl-GABA (GVG, Vigabatrin) dose-dependently inhibits cocaine-induced increases in dopamine (DA) concentrations in both the rodent and primate brain. Furthermore, it abolishes cocaine self-administration and conditioned place preference, while having no effect on locomotor activity or drug delivery to the brain. In an effort to better understand the mechanisms underlying this inhibition, we examined the effect of the selective GABA(B) receptor antagonist SCH 50911 on the GVG-induced decrease in cocaine's elevation of extracellular DA concentrations in the nucleus accumbens (NACC). Cocaine administration alone (20 mg/kg i.p.) produced a 480% increase in extracellular NACC DA levels. GVG (300 mg/kg i.p.) significantly reduced this increase by 25% (P<0.01). In sharp contrast, extracellular DA levels increased to 550% after the sequential administration of SCH 50911 (3 mg/kg i.p.), GVG, and cocaine. This increase is significantly different than GVG and cocaine (P<0.05) but similar to cocaine alone. These results demonstrate that the GABA(B) antagonist SCH 50911 was able to completely abolish GVG's inhibition of cocaine-induced increases in DA in the NACC and implicates the GABA(B) receptor in the mechanism underlying this inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.