External signals that control the activity of proteins encoded by the ras proto-oncogenes have not previously been characterized. It is now shown that stimulation of the antigen receptor of T lymphocytes causes a rapid activation of p21ras. The mechanism seems to involve a decrease in the activity of GAP, the GTPase-activating protein, on stimulation of protein kinase C. In lymphocytes, p21ras may therefore be an important mediator of the action of protein kinase C.
Mst1 is a ubiquitously expressed serine-threonine kinase, homologous to the budding yeast Ste20, whose physiological regulation and cellular function are unknown. In this paper we show that Mst1 is specifically cleaved by a caspase 3-like activity during apoptosis induced by either cross-linking CD95/Fas or by staurosporine treatment. CD95/Fas-induced cleavage of Mst1 was blocked by the cysteine protease inhibitor ZVADfmk, the more selective caspase inhibitor DEVD-CHO and by the viral serpin CrmA. Caspase-mediated cleavage of Mst1 removes the C-terminal regulatory domain and correlates with an increase in Mst1 activity in vivo, consistent with caspase-mediated cleavage activating Mst1. Overexpression of either wild-type Mst1 or a truncated mutant induces morphological changes characteristic of apoptosis. Furthermore, exogenously expressed Mst1 is cleaved, indicating that Mst1 can activate caspases that result in its cleavage. Kinasedead Mst1 did not induce morphological alterations and was not cleaved upon overexpression, indicating that Mst1 must be catalytically active in order to mediate these effects. Mst1 activates MKK6, p38 MAPK, MKK7 and SAPK in co-transfection assays, suggesting that Mst1 may activate these pathways. Our findings suggest the existence of a positive feedback loop involving Mst1, and possibly the SAPK and p38 MAPK pathways, which serves to amplify the apoptotic response.
The serine/threonine kinase Mst1, a mammalian homolog of the budding yeast Ste20 kinase, is cleaved by caspase-mediated proteolysis in response to apoptotic stimuli such as ligation of CD95/Fas or treatment with staurosporine. Furthermore, overexpression of Mst1 induces morphological changes characteristic of apoptosis in human B lymphoma cells. Mst1 may therefore represent an important target for caspases during cell death which serves to amplify the apoptotic response. Here we report that Mst1 has two caspase cleavage sites, and we present evidence indicating that cleavage may occur in an ordered fashion and be mediated by distinct caspases. We also show that caspase-mediated cleavage alone is insufficient to activate Mst1, suggesting that full activation of Mst1 during apoptosis requires both phosphorylation and proteolysis. Another role of phosphorylation may be to influence the susceptibility of Mst1 to proteolysis. Autophosphorylation of Mst1 on a serine residue close to one of the caspase sites inhibited caspase-mediated cleavage in vitro. Finally, Mst1 appears to function upstream of the protein kinase MEKK1 in the SAPK pathway. In conclusion, Mst1 activity is regulated by both phosphorylation and proteolysis, suggesting that protein kinase and caspase pathways work in concert to regulate cell death.
MST1, mammalian STE20-like kinase 1, is a serine͞threonine kinase that is cleaved and activated by caspases during apoptosis. MST1 is capable of inducing apoptotic morphological changes such as chromatin condensation upon overexpression. In this study, we show that MST1 contains two functional nuclear export signals (NESs) in the C-terminal domain, which is released from the N-terminal kinase domain upon caspase-mediated cleavage. Fulllength MST1 is excluded from the nucleus and localized to the cytoplasm. However, either truncation of the C-terminal domain, point mutation of the two putative NESs, or treatment with leptomycin B, an inhibitor of the NES receptor, results in nuclear localization of MST1. Staurosporine treatment induces chromatin condensation, MST1 cleavage, and nuclear translocation. Staurosporine-induced chromatin condensation is partially inhibited by expressing a kinase-negative mutant of MST1, suggesting an important role of MST1 in this process. Significantly, MST1 is more efficient at inducing chromatin condensation when it is constitutively localized to the nucleus by mutation of its NESs. Moreover, inhibition of MST1 nuclear translocation by mutation of its cleavage sites reduces its ability to induce chromatin condensation. Taken together, these results suggest that truncation of the C-terminal domain of MST1 by caspases may result in translocation of MST1 into the nucleus, where it promotes chromatin condensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.