Antibiotic treatment, commonly prescribed for bacterial infections, depletes and subsequently causes long‐term alterations in intestinal microbiota composition. Knowing the importance of the microbiome in the regulation of bone density, we investigated the effect of postantibiotic treatment on gut and bone health. Intestinal microbiome repopulation at 4‐weeks postantibiotic treatment resulted in an increase in the Firmicutes:Bacteroidetes ratio, increased intestinal permeability, and notably reduced femoral trabecular bone volume (approximately 30%, p < 0.01). Treatment with a mucus supplement (a high‐molecular‐weight polymer, MDY‐1001 [MDY]) prevented the postantibiotic‐induced barrier break as well as bone loss, indicating a mechanistic link between increased intestinal permeability and bone loss. A link between the microbiome composition and bone density was demonstrated by supplementing the mice with probiotic bacteria. Specifically, Lactobacillus reuteri, but not Lactobacillus rhamnosus GG or nonpathogenic Escherichia coli, reduced the postantibiotic elevation of the Firmicutes:Bacteroidetes ratio and prevented femoral and vertebral trabecular bone loss. Consistent with causing bone loss, postantibiotic‐induced dysbiosis decreased osteoblast and increased osteoclast activities, changes that were prevented by both L. reuteri and MDY. These data underscore the importance of microbial dysbiosis in the regulation of intestinal permeability and bone health, as well as identify L. reuteri and MDY as novel therapies for preventing these adverse effects. © 2018 American Society for Bone and Mineral Research.
Glucocorticoids (GCs) are potent immune‐modulating drugs with significant side effects, including glucocorticoid‐induced osteoporosis (GIO). GCs directly induce osteoblast and osteocyte apoptosis but also alter intestinal microbiota composition. Although the gut microbiota is known to contribute to the regulation of bone density, its role in GIO has never been examined. To test this, male C57/Bl6J mice were treated for 8 weeks with GC (prednisolone, GC‐Tx) in the presence or absence of broad‐spectrum antibiotic treatment (ABX) to deplete the microbiota. Long‐term ABX prevented GC‐Tx‐induced trabecular bone loss, showing the requirement of gut microbiota for GIO. Treatment of GC‐Tx mice with a probiotic (Lactobacillus reuteri [LR]) prevented trabecular bone loss. Microbiota analyses indicated that GC‐Tx changed the abundance of Verrucomicobiales and Bacteriodales phyla and random forest analyses indicated significant differences in abundance of Porphyromonadaceae and Clostridiales operational taxonomic units (OTUs) between groups. Furthermore, transplantation of GC‐Tx mouse fecal material into recipient naïve, untreated WT mice caused bone loss, supporting a functional role for microbiota in GIO. We also report that GC caused intestinal barrier breaks, as evidenced by increased serum endotoxin level (2.4‐fold), that were prevented by LR and ABX treatments. Enhancement of barrier function with a mucus supplement prevented both GC‐Tx–induced barrier leakage and trabecular GIO. In bone, treatment with ABX, LR or a mucus supplement reduced GC‐Tx–induced osteoblast and osteocyte apoptosis. GC‐Tx suppression of Wnt10b in bone was restored by the LR and high‐molecular‐weight polymer (MDY) treatments as well as microbiota depletion. Finally, we identified that bone‐specific Wnt10b overexpression prevented GIO. Taken together, our data highlight the previously unappreciated involvement of the gut microbiota and intestinal barrier function in trabecular GIO pathogenesis (including Wnt10b suppression and osteoblast and osteocyte apoptosis) and identify the gut as a novel therapeutic target for preventing GIO. © 2019 American Society for Bone and Mineral Research.
Background & AimsWe previously demonstrated that short-term oral administration of the probiotic Lactobacillus reuteri 6475 enhanced bone density in male but not female mice. We also established that L. reuteri 6475 enhanced bone health and prevented bone loss in estrogen-deficient female mice. In this study, we tested whether a mild inflammatory state and/or a long-term treatment with the probiotic was required to promote a positive bone effect in estrogen-sufficient female mice.MethodsA mild inflammatory state was induced in female mice by dorsal surgical incision (DSI). Following DSI animals were orally supplemented with L. reuteri or vehicle control for a period of 8 weeks. Gene expression was measured in the intestine and bone marrow by qPCR. Distal femoral bone density and architecture was analyzed by micro-CT.ResultsWe report that 8 weeks after DSI there is a significant increase in the weight of spleen, thymus and visceral (retroperitoneal) fat pads. Expression of intestinal cytokines and tight junction proteins are also altered 8 weeks post-DSI. Interestingly, L. reuteri treatment was found to display both intestinal region- and inflammation-dependent effects. Unexpectedly we identified that 1) L. reuteri treatment increased bone density in females but only in those that underwent DSI and 2) DSI benefited cortical bone parameters. In the bone marrow, dorsal surgery induced CD4+ T cell numbers, a response that was unaffected by L. reuteri treatment, whereas expression of RANKL, OPG and IL-10 were significantly affected by L. reuteri treatment.ConclusionOur data reveals a previously unappreciated effect of a mild surgical procedure causing a long-lasting effect on inflammatory gene expression in the gut and the bone. Additionally, we demonstrate that in intact female mice, the beneficial effect of L. reuteri on bone requires an elevated inflammatory status.
Osteoporosis, characterized by low bone mass and micro-architectural deterioration of bone tissue with increased risk of fracture, can be categorized into two forms: primary or secondary, depending on whether it occurs as part of the natural aging process (estrogen-deficiency) or as part of disease pathology. In both forms bone loss is due to an imbalance in the bone remodeling process with resorption/formation skewed more toward bone loss. Recent studies and emerging evidence consistently demonstrate the potential of the intestinal microbiota to modulate bone health. The current chapter discusses the process of bone remodeling and the pathology of osteoporosis and introduces the intestinal microbiota and its potential to influence bone health. In particular, we highlight recent murine studies that examine how probiotic supplementation can both increase bone density in healthy individuals as well as protect against primary (estrogen-deficiency) as well as secondary osteoporosis. Potential mechanisms are described to account for how probiotic treatments could be exerting their beneficial effect on bone health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.