Carbapenem-resistant Enterobacterales (CRE) are a growing public health concern due to resistance to multiple antibiotics and potential to cause health care-associated infections with high mortality. Carbapenemaseproducing CRE are of particular concern given that carbapenemase-encoding genes often are located on mobile genetic elements that may spread between different organisms and species. In this study, we performed phenotypic and genotypic characterization of CRE collected at eight U.S. sites participating in active population-and laboratory-based surveillance of carbapenem-resistant organisms. Among 421 CRE tested, the majority were isolated from urine (n = 349, 83%). Klebsiella pneumoniae was the most common organism (n = 265, 63%), followed by Enterobacter cloacae complex (n = 77, 18%) and Escherichia coli (n = 50, 12%). Of 419 isolates analyzed by whole genome sequencing, 307 (73%) harbored a carbapenemase gene; variants of bla KPC predominated (n = 299, 97%). The occurrence of carbapenemase-producing K. pneumoniae, E. cloacae complex, and E. coli varied by region; the predominant sequence type within each genus was ST258, ST171, and ST131, respectively. None of the carbapenemase-producing CRE isolates displayed resistance to all antimicrobials tested; susceptibility to amikacin and tigecycline was generally retained.
Pseudomonas aeruginosa establishes life-long chronic infections in the cystic fibrosis (CF) lung by utilizing various adaptation strategies. Some of these strategies include altering metabolic pathways to utilize readily available nutrients present in the host environment. The airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphatidylcholine, a major component of lung surfactant. Pseudomonas aeruginosa can degrade phosphatidylcholine to glycerol and fatty acids to increase the availability of usable carbon sources in the CF lung. In this study, we show that some CF-adapted P. aeruginosa isolates utilize glycerol more efficiently as a carbon source than nonadapted isolates. Furthermore, a mutation in a gene required for glycerol utilization impacts the production of several virulence factors in both acute and chronic isolates of P. aeruginosa. Taken together, the results suggest that interference with this metabolic pathway may have potential therapeutic benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.