We present an N-body model that reproduces the morphology and kinematics of the Magellanic Stream (MS), a vast neutral hydrogen (HI) structure that trails behind the Large and Small Magellanic Clouds (LMC and SMC, respectively) in their orbit about the Milky Way. After investigating 8 × 10 6 possible orbits consistent with the latest proper motions, we adopt an orbital history in which the LMC and SMC have only recently become a strongly interacting binary pair. We find that their first close encounter ∼2 Gyr ago provides the necessary tidal forces to disrupt the disk of the SMC and thereby create the MS. The model also reproduces the on-sky bifurcation of the two filaments of the MS, and we suggest that a bound association with the Milky Way is required to reproduce the bifurcation. Additional HI structures are created during the tidal evolution of the SMC disk, including the Magellanic Bridge, the "Counter-Bridge," and two branches of leading material. Insights into the chemical evolution of the LMC are also provided, as a substantial fraction of the material stripped away from the SMC is engulfed by the LMC. Lastly we compare three different N-body realizations of the stellar component of the SMC, which we model as a pressure-supported spheroid motivated by recent kinematical observations. We find that an extended spheroid is better able to explain the stellar periphery of the SMC, and the tidal evolution of the spheroid may imply the existence of a stellar stream akin to the gaseous MS.
Bound orbits have traditionally been assigned to the Large and Small Magellanic Clouds (LMC and SMC, respectively) in order to provide a formation scenario for the Magellanic Stream (MS) and its Leading Arm (LA), two prominent neutral hydrogen (HI) features connected to the LMC and SMC. However, Hubble Space Telescope (HST) measurements of the proper motions of the LMC and SMC have challenged the plausibility of bound orbits, causing the origin of the MS to re‐emerge as a contested issue. We present a new tidal model in which structures resembling the bifurcated MS and elongated LA are able to form in a bound orbit consistent with the HST proper motions. The LMC and SMC have remained bound to each other only recently in our model despite being separately bound to the Milky Way for more than 5 Gyr. We find that the MS and LA are able to form as a consequence of LMC‐dominated tidal stripping during the recent dynamical coupling of the LMC and SMC. Our orbital model depends on our assumption that the Milky Way has a constant circular velocity of Vcir= 250 km s−1 up to 160 kpc, which implies a massive isothermal halo that is not completely rejected by observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.