Sequence heterochrony (changes in the order in which events occur) is a potentially important, but relatively poorly explored, mechanism for the evolution of development. In part, this is because of the inherent difficulties in inferring sequence heterochrony across species. The event-pairing method, developed independently by several workers in the mid-1990s, encodes sequences in a way that allows them to be examined in a phylogenetic framework, but the results can be difficult to interpret in terms of actual heterochronic changes. Here, we describe a new, parsimony-based method to interpret such results. For each branch of the tree, it identifies the least number of event movements (heterochronies) that will explain all the observed event-pair changes. It has the potential to find all alternative, equally parsimonious explanations, and generate a consensus, containing the movements that form part of every equally most parsimonious explanation. This new technique, which we call Parsimov, greatly increases the utility of the event-pair method for inferring instances of sequence heterochrony.
A broad phylogenetic review of fins, limbs, and girdles throughout the stem and base of the crown group is needed to get a comprehensive idea of transformations unique to the assembly of the tetrapod limb ground plan. In the lower part of the tetrapod stem, character state changes at the pectoral level dominate; comparable pelvic level data are limited. In more crownward taxa, pelvic level changes dominate and repeatedly precede similar changes at pectoral level. Concerted change at both levels appears to be the exception rather than the rule. These patterns of change are explored by using afternative treatments of data in phylogenetic analyses. Results highlight a large data gap in the stem group preceding the first appearance of limbs with digits. It is also noted that the record of morphological diversity among stem tetrapods is somewhat worse than that of basal crown group tetrapods. The pre-limbed evolution of stem tetrapod paired fins is marked by a gradual reduction in axial segment numbers (mesomeres); pectoral fins of the sister group to limbed tetrapods include only three. This reduction in segment number is accompanied by increased regional specialization, and these changes are discussed with reference to the phylogenetic distribution of characteristics of the stylopod, zeugopod, and autopod.
Background: Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony) to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb.
Heterochrony is important as a potential mechanism of evolutionary change. However, the analysis of developmental timing data within a phylogenetic framework to identify important shifts has proven difficult. In particular, analytical problems with sequence (event) heterochrony revolve around the lack of an absolute time frame in development to allow standardization of timing data across species. An important breakthrough in this regard is the method of "event-pairing," which compares the relative timing of developmental events in a pairwise fashion. The resulting event-pair-encoded data can be mapped onto a phylogeny, which can provide important biological information. However, event-paired data are cumbersome to work with and lack a rigorous quantitative framework under which to analyze them. Critically, the otherwise advantageous relativity of event-pairing prevents an assessment of whether one or both events in a single event-pair have changed position during evolutionary history. Building on the method of event-pairing, we describe a protocol whereby event-pair transformations along a given branch are analyzed en bloc. Our method of "event-pair cracking" thereby allows developmental timing data to be analyzed quantitatively within a phylogenetic framework to infer key heterochronic shifts. We demonstrate the utility of event-pair cracking through a worked example and show how it provides a set of desired features identified by previous authors.
SUMMARY Heterochrony (differences in developmental timing between species) is a major mechanism of evolutionary change. However, the dynamic nature of development and the lack of a universal time frame makes heterochrony difficult to analyze. This has important repercussions in any developmental study that compares patterns of morphogenesis and gene expression across species. We describe a method that makes it possible to quantify timing shifts in embryonic development and to map their evolutionary history. By removing a direct dependence on traditional staging series, through the use of a relative time frame, it allows the analysis of developmental sequences across species boundaries. Applying our method to published data on vertebrate development, we identified clear patterns of heterochrony. For example, an early onset of various heart characters occurs throughout amniote evolution. This suggests that advanced (precocious) heart development arose in evolutionary history before endothermy. Our approach can be adapted to analyze other forms of comparative dynamic data, including patterns of developmental gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.