Modulation of the ligand structure results in complex solubilities that can varied by more than four orders of magnitude. The most soluble of these complexes yields an electrolyte with theoretical energy densities 6-fold higher than commercial aqueous vanadium RFBs.
New active materials are needed to improve the performance and reduce the cost of non-aqueous redox flow batteries (RFBs) for grid-scale energy storage applications.
Metal acetylacetonates possess several very attractive electrochemical properties; however, their cyclabilities fall short of targets for use in nonaqueous redox flow batteries. This paper describes structural and compositional changes during the reduction and oxidation of ruthenium(III) acetylacetonate [Ru(acac)3], a representative acetylacetonate. Voltammetry, bulk electrolysis, and in situ X‐ray absorption spectroscopy (XAS) results are complemented by those from density functional theory (DFT) calculations. The reduction of Ru(acac)3 in acetonitrile is highly reversible, producing a couple at −1.1 V versus Ag/Ag+. In situ XAS and DFT indicate the formation of [Ru(acac)3]− with Ru−O bonds lengthened relative to Ru(acac)3, nearly all of the charge localized on Ru, and no ligand shedding. The oxidation of Ru(acac)3 is quasireversible, with a couple at 0.7 V. The initial product is likely [Ru(acac)3]+; however, this species is short‐lived, converting to a product with a couple at −0.2 V, a structure that is nearly identical to that of Ru(acac)3 within 3 Å of Ru, and approximately 70 % of the charge extracted from Ru (balance from acetylacetone). This non‐innocence likely contributes to the instability of [Ru(acac)3]+. Taken together, the results suggest that the stabilities and cyclabilities of acetylacetonates are determined by the degree of charge transfer to/from the metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.