Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientifi c and Technical Information (STI) Program plays a key part in helping NASA maintain this important role. The NASA STI Program operates under the auspices of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI Program provides access to the NASA Technical Report Server-Registered (NTRS Reg) and NASA Technical Report Server-Public (NTRS) thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types: • TECHNICAL PUBLICATION. Reports of completed research or a major signifi cant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of signifi cant scientifi c and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers, but has less stringent limitations on manuscript length and extent of graphic presentations.
A simple model of the Advanced Stirling Convertor's (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance. NomenclatureC f = alternator motor constant (N·s/m) F = Force (N) FF = sinusoidally varying forcing function (N) I = current (A) L alt = alternator inductance (H) N = number of turns Q in_net = net heat input (W) t = time (s) R alt = alternator resistance (Ω) R1, R2 = resistances (Ω) Sage_Q in = net heat input as calculated by Sage (W) V emf = electromotive force (EMF) voltage (V) Wnet = Power (W) x = position (m) ΔV = voltage (V) Φ = magnetic flux (Wb)
The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 °C. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 °C is currently underway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.