Cis and trans regulatory divergence underlies phenotypic and evolutionary diversification. Relatively little is understood about the complexity of regulatory evolution accompanying crop domestication, particularly for polyploid plants. Here, we compare the fiber transcriptomes between wild and domesticated cotton (Gossypium hirsutum) and their reciprocal F1 hybrids, revealing genome-wide (~15%) and often compensatory cis and trans regulatory changes under divergence and domestication. The high level of trans evolution (54%–64%) observed is likely enabled by genomic redundancy following polyploidy. Our results reveal that regulatory variation is significantly associated with sequence evolution, inheritance of parental expression patterns, co-expression gene network properties, and genomic loci responsible for domestication traits. With respect to regulatory evolution, the two subgenomes of allotetraploid cotton are often uncoupled. Overall, our work underscores the complexity of regulatory evolution during fiber domestication and may facilitate new approaches for improving cotton and other polyploid plants.
The two cultivated allopolyploid cottons, Gossypium hirsutum and Gossypium barbadense, represent a remarkable example of parallel independent domestication, both involving dramatic morphological transformations under selection from wild perennial plants to annualized row crops. Deep resequencing of 643 newly sampled accessions spanning the wild-to-domesticated continuum of both species, and their allopolyploid relatives, are combined with existing data to resolve species relationships and elucidate multiple aspects of their parallel domestication. It is confirmed that wild G. hirsutum and G. barbadense were initially domesticated in the Yucatan Peninsula and NW South America, respectively, and subsequently spread under domestication over 4000-8000 years to encompass most of the American tropics. A robust phylogenomic analysis of infraspecific relationships in each species is presented, quantify genetic diversity in both, and describe genetic bottlenecks associated with domestication and subsequent diffusion. As these species became sympatric over the last several millennia, pervasive genome-wide bidirectional introgression occurred, often with striking asymmetries involving the two co-resident genomes of these allopolyploids. Diversity scans revealed genomic regions and genes unknowingly targeted during domestication and additional subgenomic asymmetries. These analyses provide a comprehensive depiction of the origin, divergence, and adaptation of cotton, and serve as a rich resource for cotton improvement.
In this chapter some of the salient features of polyploidy in plants, including a brief description of its prevalence and modes of formation are discussed. Several model systems are presented for the study of polyploids and provide example case studies, hoping to illuminate how the 'internal' and 'external' processes associated with polyploidy contribute to evolutionary success and to the generation of biodiversity.
Summary Allopolyploidy is a prevalent process in plants, having important physiological, ecological and evolutionary consequences. Transcriptomic responses to genomic merger and doubling have been demonstrated in many allopolyploid systems, encompassing a diversity of phenomena including homoeolog expression bias, genome dominance, expression‐level dominance and revamping of co‐expression networks. Notwithstanding the foregoing, there remains a need to develop a conceptual framework that will stimulate a deeper understanding of these diverse phenomena and their mechanistic interrelationships. Here we introduce considerations relevant to this framework with a focus on cis–trans interactions among duplicated genes and alleles in hybrids and allopolyploids. By extending classic allele‐specific expression analysis to the allopolyploid level, we distinguish the distinct effects of progenitor regulatory interactions from the novel intergenomic interactions that arise from genome merger and allopolyploidization. This perspective informs experiments designed to reveal the molecular genetic basis of gene regulatory control, and will facilitate the disentangling of genetic from epigenetic and higher‐order effects that impact gene expression. Finally, we suggest that the extended cis–trans model may help conceptually unify several presently disparate hallmarks of allopolyploid evolution, including genome‐wide expression dominance and biased fractionation, and lead to a new level of understanding of phenotypic novelty accompanying polyploidy.
All extant core-eudicot plants share a common ancestral genome that has experienced cyclic polyploidizations and (re)diploidizations. Reshuffling of the ancestral core-eudicot genome generates abundant genomic diversity, but the role of this diversity in shaping the hierarchical genome architecture, such as chromatin topology and gene expression, remains poorly understood. Here, we assemble chromosome-level genomes of one diploid and three tetraploid Panax species and conduct in-depth comparative genomic and epigenomic analyses. We show that chromosomal interactions within each duplicated ancestral chromosome largely maintain in extant Panax species, albeit experiencing ca. 100–150 million years of evolution from a shared ancestor. Biased genetic fractionation and epigenetic regulation divergence during polyploidization/(re)diploidization processes generate remarkable biochemical diversity of secondary metabolites in the Panax genus. Our study provides a paleo-polyploidization perspective of how reshuffling of the ancestral core-eudicot genome leads to a highly dynamic genome and to the metabolic diversification of extant eudicot plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.