To enable automated analysis of rehabilitation movements, an approach for accurately identifying and segmenting movement repetitions is required. This paper proposes an approach for online, automated segmentation and identification of movement segments from continuous time-series data of human movement, obtained from body-mounted inertial measurement units or from motion capture data. The proposed approach uses a two-stage identification and recognition process, based on velocity features and stochastic modeling of each motion to be identified. In the first stage, motion segment candidates are identified based on a characteristic sequence of velocity features such as velocity peaks and zero velocity crossings. In the second stage, hidden Markov models are used to accurately identify segment locations from the identified candidates. The proposed approach is capable of online segmentation and identification, enabling interactive feedback in rehabilitation applications. The approach is validated on 20 healthy subjects and four rehabilitation patients performing rehabilitation movements, achieving segmentation accuracy of 87% with user specific templates and 79%-83% accuracy with user-independent templates.
Many applications in rehabilitation and sports training require the assessment of the patient's status based on observation of their movement. Small wireless sensors, such as accelerometers and gyroscopes, can be utilized to provide a quantitative measure of the human movement for assessment. In this paper, a kinematics-based approach is developed to estimate human leg posture and velocity from wearable sensors during the performance of typical physiotherapy and training exercises. The proposed approach uses an extended Kalman filter to estimate joint angles from accelerometer and gyroscopic data and is capable of recovering joint angles from arbitrary 3D motion. Additional joint limit constraints are implemented to reduce drift, and an automated approach is developed for estimating and adapting the process noise during online estimation. The approach is validated through a user study consisting of 20 subjects performing knee and hip rehabilitation exercises. When compared to motion capture, the approach achieves an average root-mean-square error of 4.27 cm for unconstrained motion, with an average joint error of 6.5°. The average root-mean-square error is 3.31 cm for sagittal planar motion, with an average joint error of 4.3°.
We consider a dynamical system whose trajectory is a result of minimizing a multiphase cost function. The multiphase cost function is assumed to be a weighted sum of specified features (or basis functions) with phase-dependent weights that switch at some unknown phase transition points. A new inverse optimal control approach for recovering the cost weights of each phase and estimating the phase transition points is proposed. The key idea is to use a length-adapted window moving along the observed trajectory, where the window length is determined by finding the minimal observation length that suffices for a successful cost weight recovery. The effectiveness of the proposed method is first evaluated on a simulated robot arm, and then demonstrated on a dataset of human participants performing a series of squatting tasks. The results demonstrate that the proposed method reliably retrieves the cost function of each phase and segments each phase of motion from the trajectory with a segmentation accuracy above 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.