This paper describes methods for automatically locating points of significant change in music or audio, by analyzing local self-similarity. This method can find individual note boundaries or even natural segment boundaries such as verse/chorus or speech/music transitions, even in the absence of cues such as silence. This approach uses the signal to model itself, and thus does not rely on particular acoustic cues nor requires training. We present a wide variety of applications, including indexing, segmenting, and beat tracking of music and audio. The method works well on a wide variety of audio sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.