Recent drilling successes on Rutford Ice Stream in West Antarctica demonstrate the viability of hot water drilling subglacial access holes to depths >2000 m. Having techniques to access deep subglacial environments reliably paves the way for subglacial lake exploration beneath the thick central West Antarctic Ice Sheet. An ideal candidate lake, overlain by ~2650 m of ice, identified by Centro de Estudios Científicos (CECs), Chile, has led to collaboration with British Antarctic Survey to access Subglacial Lake CECs (SLCECs). To conform with the Scientific Committee on Antarctic Research code of conduct, which provides a guide to responsible scientific exploration and stewardship of these pristine systems, any access drilling must minimise all aspects of contamination and disturbance of the subglacial environment. To meet these challenges, along with thicker ice and 2000 m elevation, pumping and water treatment systems developed for the Subglacial Lake Ellsworth project, together with new diesel generators, additional water heating and longer drill hose, are currently being integrated with the BEAMISH hot water drill. A dedicated test season near SLCECs will commission the new clean hot water drill, with testing and validation of all clean operating procedures. A subsequent season will then access SLCECs cleanly.
Background information. Nuclear dimorphism is characteristic of ciliated protozoa. A transcriptionally-active macronucleus co-exists with a transcriptionally-silent micronucleus, which is activated only at conjugation. During conjugation, each conjugant develops two new genetically matched macronuclei and micronuclei, and the pre-existing macronucleus is eliminated. Elimination of the pre-existing macronucleus during conjugation is an apoptotic-like process. The macronucleus becomes highly condensed, DNA laddering occurs, caspase activity increases, acidic enzymes accumulate within the nucleoplasm, and the nucleus shrinks in size. The current study focused on the involvement of actin and myosin in nuclear events of conjugation. A myosin knockout strain was mated with wild-type, and the nuclear events were monitored with confocal microscopy.Results. Early nuclear events, including development of new macronuclei and micronuclei, appeared qualitatively normal in knockout conjugants. Completion of nuclear condensation and acidification in the pre-existing macronucleus was blocked in 44% of knockout conjugants. Knockout conjugants that failed to fully achieve nuclear condensation and acidification did not eliminate the pre-existing macronucleus. In control experiments, blockage of chromatin condensation, nuclear acidification, and macronuclear elimination was never observed in wild-type conjugants.Conclusions. Perturbation of either DNA fragmentation, chromatin condensation or nuclear acidification can lead to blockage of apoptotic-like elimination of the macronucleus in MYO1-knockout conjugants. Consistent with the known motor function of myosins and the involvement of Myo1 in vesicle trafficking in Tetrahymena, we argue that Myo1 could specifically affect condensation of chromatin and acidification of the nucleus through direct interaction with chromatin and through Myo1-dependent vesicle trafficking to the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.