BackgroundSuicide is an alarming public health problem accounting for a considerable number of deaths each year worldwide. Many more individuals contemplate suicide. Understanding the attributes, characteristics, and exposures correlated with suicide remains an urgent and significant problem. As social networking sites have become more common, users have adopted these sites to talk about intensely personal topics, among them their thoughts about suicide. Such data has previously been evaluated by analyzing the language features of social media posts and using factors derived by domain experts to identify at-risk users.ResultsIn this work, we automatically extract informal latent recurring topics of suicidal ideation found in social media posts. Our evaluation demonstrates that we are able to automatically reproduce many of the expertly determined risk factors for suicide. Moreover, we identify many informal latent topics related to suicide ideation such as concerns over health, work, self-image, and financial issues.ConclusionsThese informal topics topics can be more specific or more general. Some of our topics express meaningful ideas not contained in the risk factors and some risk factors do not have complimentary latent topics. In short, our analysis of the latent topics extracted from social media containing suicidal ideations suggests that users of these systems express ideas that are complementary to the topics defined by experts but differ in their scope, focus, and precision of language.
Collaborative tagging applications have become a popular tool allowing Internet users to manage online resources with tags. Most collaborative tagging applications permit unsupervised tagging resulting in tag ambiguity in which a single tag has many different meanings and tag redundancy in which several tags have the same meaning. Common metrics for evaluating tag recommenders may overestimate the utility of ambiguous tags or ignore the appropriateness of redundant tags. Ambiguity and redundancy may even burden the user with additional effort by requiring them to clarify an annotation or forcing them to distinguish between highly related items. In this paper we demonstrate that ambiguity and redundancy impede the evaluation and performance of tag recommenders. Five tag recommendation strategies based on popularity, collaborative filtering and link analysis are explored. We use a cluster-based approach to define ambiguity and redundancy and provide extensive evaluation on three real world datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.