Categorical quantum mechanics and the Wolfram model offer distinct but complementary approaches to studying the relationship between diagrammatic rewriting systems over combinatorial structures and the foundations of physics; the objective of the present article is to begin elucidating the formal correspondence between the two methodologies in the context of the ZX-calculus formalism of Coecke and Duncan for reasoning diagrammatically about linear maps between qubits. After briefly summarizing
This brief paper introduces a new approach to assessing the trustworthiness of research comparisons when expressed numerically. The 'number needed to disturb' a research finding would be the number of counterfactual values that can be added to the smallest arm of any comparison before the difference or 'effect' size disappears, minus the number of cases missing key values. This way of presenting the security of findings has several advantages over the use of significance tests, effect sizes and confidence intervals. It is not predicated on random sampling, full response or any specific distribution of data. It bundles together the sample size, magnitude of the finding and the level of attrition in a way that is standardised and therefore comparable between studies.
We investigate algebraic and compositional properties of abstract multiway rewriting systems, which are archetypical structures underlying the formalism of the Wolfram model. We demonstrate the existence of higher homotopies in this class of rewriting systems, where homotopical maps are induced by the inclusion of appropriate rewriting rules taken from an abstract rulial space of all possible such rules. Furthermore, we show that a multiway rewriting system with homotopies up to order n may naturally be formalized as an n-fold category, such that (upon inclusion of appropriate inverse morphisms via invertible rewriting relations) the infinite limit of this structure yields an ∞-groupoid. Via Grothendieck’s homotopy hypothesis, this ∞-groupoid thus inherits the structure of a formal homotopy space. We conclude with some comments on how this computational framework of homotopical multiway systems may potentially be used for making formal connections to homotopy spaces upon which models relevant to physics may be instantiated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.