In this work, we report a paradigmatic shift in bioinspired microchannel heat exchanger design toward its integration into thin film wearable devices, thermally active surfaces in buildings, photovoltaic devices, and other thermoregulating devices whose typical cooling fluxes are below 1 kW m−2. The transparent thermoregulation device is fabricated by bonding a thin corrugated elastomeric film to the surface of a substrate to form a microchannel water-circuit with bioinspired unit cell geometry. Inspired by the dynamic scaling of flow systems in nature, we introduce empirically derived sizing rules and a novel numerical optimization method to maximize the thermoregulation performance of the microchannel network by enhancing the uniformity of flow distribution. The optimized network design results in a 25% to 37% increase in the heat flux compared to non-optimized designs. The study demonstrates the versatility of the presented design and architecture by fabricating and testing a scaled-up numerically optimized heat exchanger device for building-scale and wearable applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.