The low-frequency unsteadiness in the direct numerical simulation of a Mach 2.9 shock wave/turbulent boundary layer interaction with mean flow separation is analysed using dynamic mode decomposition (DMD). The analysis is applied both to threedimensional and spanwise-averaged snapshots of the flow. The observed low-frequency DMD modes all share a common structure, characterized by perturbations along the shock, together with streamwise-elongated regions of low and high momentum that originate at the shock foot and extend into the downstream flow. A linear superposition of these modes, with dynamics governed by their corresponding DMD eigenvalues, accurately captures the unsteadiness of the shock. In addition, DMD analysis shows that the downstream regions of low and high momentum are unsteady and that their unsteadiness is linked to the unsteadiness of the shock. The observed flow structures in the downstream flow are reminiscent of Görtler-like vortices that are present in this type of flow due to an underlying centrifugal instability, suggesting a possible physical mechanism for the low-frequency unsteadiness in shock wave/turbulent boundary layer interactions.
We show that for complex nonlinear systems, model reduction and compressive sensing strategies can be combined to great advantage for classifying, projecting, and reconstructing the relevant low-dimensional dynamics. 2 -based dimensionality reduction methods such as the proper orthogonal decomposition are used to construct separate modal libraries and Galerkin models based on data from a number of bifurcation regimes. These libraries are then concatenated into an over-complete library, and 1 sparse representation in this library from a few noisy measurements results in correct identification of the bifurcation regime. This technique provides an objective and general framework for classifying the bifurcation parameters, and therefore, the underlying dynamics and stability. After classifying the bifurcation regime, it is possible to employ a low-dimensional Galerkin model, only on modes relevant to that bifurcation value. These methods are demonstrated on the complex Ginzburg-Landau equation using sparse, noisy measurements. In particular, three noisy measurements are used to accurately classify and reconstruct the dynamics associated with six distinct bifurcation regimes; in contrast, classification based on least-squares fitting ( 2 ) fails consistently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.