BackgroundIn Madagascar, despite an influenza surveillance established since 1978, little is known about the etiology and prevalence of viruses other than influenza causing influenza-like illnesses (ILIs).Methodology/Principal FindingsFrom July 2008 to June 2009, we collected respiratory specimens from patients who presented ILIs symptoms in public and private clinics in Antananarivo (the capital city of Madagascar). ILIs were defined as body temperature ≥38°C and cough and at least two of the following symptoms: sore throat, rhinorrhea, headache and muscular pain, for a maximum duration of 3 days. We screened these specimens using five multiplex real time Reverse Transcription and/or Polymerase Chain Reaction assays for detection of 14 respiratory viruses. We detected respiratory viruses in 235/313 (75.1%) samples. Overall influenza virus A (27.3%) was the most common virus followed by rhinovirus (24.8%), RSV (21.2%), adenovirus (6.1%), coronavirus OC43 (6.1%), influenza virus B (3.9%), parainfluenza virus-3 (2.9%), and parainfluenza virus-1 (2.3%). Co-infections occurred in 29.4% (69/235) of infected patients and rhinovirus was the most detected virus (27.5%). Children under 5 years were more likely to have one or more detectable virus associated with their ILI. In this age group, compared to those ≥5 years, the risk of detecting more than one virus was higher (OR = 1.9), as was the risk of detecting of RSV (OR = 10.1) and adenovirus (OR = 4.7). While rhinovirus and adenovirus infections occurred year round, RSV, influenza virus A and coronavirus OC43 had defined period of circulation.ConclusionsIn our study, we found that respiratory viruses play an important role in ILIs in the Malagasy community, particularly in children under 5 years old. These data provide a better understanding of the viral etiology of outpatients with ILI and describe for the first time importance of these viruses in different age group and their period of circulation.
The virus reemerged during an outbreak in Madagascar in 2008.
BackgroundIn Madagascar, very little is known about the etiology and prevalence of acute respiratory infections (ARIs) in a rural tropical area. Recent data are needed to determine the viral and atypical bacterial etiologies in children with defined clinical manifestations of ARIs.MethodsDuring one year, we conducted a prospective study on ARIs in children between 2 to 59 months in the community hospital of Ampasimanjeva, located in the south-east of Madagascar. Respiratory samples were analyzed by multiplex real-time RT-PCR, including 18 viruses and 2 atypical bacteria. The various episodes of ARI were grouped into four clinical manifestations with well-documented diagnosis: “Community Acquired Pneumonia”(CAP, group I), “Other acute lower respiratory infections (Other ALRIs, group II)”, “Upper respiratory tract infections with cough (URTIs with cough, group III)”and “Upper respiratory tract infections without cough (URTIs without cough, group IV)”.Results295 children were included in the study between February 2010 and February 2011. Viruses and/or atypical bacteria respiratory pathogens were detected in 74.6% of samples, the rate of co-infection was 27.3%. Human rhinovirus (HRV; 20.5%), metapneumovirus (HMPV A/B, 13.8%), coronaviruses (HCoV, 12.5%), parainfluenza virus (HPIV, 11.8%) and respiratory syncytial virus A and B (RSV A/B, 11.8%) were the most detected. HRV was predominantly single detected (23.8%) in all the clinical groups while HMPV A/B (23.9%) was mainly related to CAP (group I), HPIV (17.3%) to the “Other ALRIs” (group II), RSV A/B (19.5%) predominated in the group “URTIs with cough” (group III) and Adenovirus (HAdV, 17.8%) was mainly detected in the “without cough” (group IV).InterpretationThis study describes for the first time the etiology of respiratory infections in febrile children under 5 years in a malaria rural area of Madagascar and highlights the role of respiratory viruses in a well clinically defined population of ARIs.
Mixed viral and bacterial infections are widely described in community-acquired pneumonia; however, the clinical implications of co-infection on the associated immunopathology remain poorly studied. In this study, microRNA, mRNA and cytokine/chemokine secretion profiling were investigated for human monocyte-derived macrophages infected in-vitro with Influenza virus A/H1N1 and/or Streptococcus pneumoniae. We observed that the in-vitro co-infection synergistically increased interferon-γ-induced protein-10 (CXCL10, IP-10) expression compared to the singly-infected cells conditions. We demonstrated that endogenous miRNA-200a-3p, whose expression was synergistically induced following co-infection, indirectly regulates CXCL10 expression by targeting suppressor of cytokine signaling-6 (SOCS-6), a well-known regulator of the JAK-STAT signaling pathway. Additionally, in a subsequent clinical pilot study, immunomodulators levels were evaluated in samples from 74 children (≤5 years-old) hospitalized with viral and/or bacterial community-acquired pneumonia. Clinically, among the 74 cases of pneumonia, patients with identified mixed-detection had significantly higher (3.6-fold) serum IP-10 levels than those with a single detection (P = 0.03), and were significantly associated with severe pneumonia (P < 0.01). This study demonstrates that viral and bacterial co-infection modulates the JAK-STAT signaling pathway and leads to exacerbated IP-10 expression, which could play a major role in the pathogenesis of pneumonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.