Global declines in pollinators, including bees, can have major consequences for ecosystem services. Bees are dominant pollinators, making it imperative to mitigate declines. Pathogens are strongly implicated in the decline of native and honey bees. Diet affects bee immune responses, suggesting the potential for floral resources to provide natural resistance to pathogens. We discovered that sunflower (Helianthus annuus) pollen dramatically and consistently reduced a protozoan pathogen (Crithidia bombi) infection in bumble bees (Bombus impatiens) and also reduced a microsporidian pathogen (Nosema ceranae) of the European honey bee (Apis mellifera), indicating the potential for broad anti-parasitic effects. In a field survey, bumble bees from farms with more sunflower area had lower Crithidia infection rates. Given consistent effects of sunflower in reducing pathogens, planting sunflower in agroecosystems and native habitat may provide a simple solution to reduce disease and improve the health of economically and ecologically important pollinators.
Pathogen transmission between domesticated and wild host species has important implications for community ecology, agriculture, and wildlife conservation. Bumble bees provide valuable pollination services that are vital for both wildflowers and agricultural production. Intense concerns about pathogen spillover from commercial bumble bees to wild bee populations, and the potential harmful effects of pathogen spillback to commercial bees, has stimulated a need for practical strategies that effectively manage bumble bee infectious diseases. Here, we assessed the costs and benefits of a medicinal sunflower pollen diet (Helianthus annuus) on whole-colony bumble bee disease and performance using commercial colonies of the common eastern bumble bee, Bombus impatiens, and its protozoan pathogen, Crithidia bombi (Trypanosomatida). We first found that a 1:1 mixture of sunflower combined with wildflower pollen reduced C. bombi infection prevalence and intensity within individual B. impatiens workers by nearly 4-fold and 12-fold, respectively, relative to wildflower pollen. At the colony level, a 1:1 mixture of sunflower and wildflower pollen reduced C. bombi infection prevalence by 11% averaged over a 10week period and infection intensity by 30% relative to wildflower pollen. Colony performance was similar between pollen diets and infection treatments, including the number of workers and immatures produced, and size and weight of workers, drones, and queens. Infection significantly reduced the probability of queen production in colonies fed a pure wildflower pollen diet, but not colonies fed a mixed sunflower pollen diet, suggesting that the medicinal benefits of a mixed sunflower pollen diet can reverse the negative effects of infection on reproductive success. This study provides evidence that sunflower pollen as part of a mixed pollen diet can reduce infection in individual bees and whole colonies with no significant nutritional trade-offs for colony worker production and most aspects of colony reproduction. A supplemental mixed sunflower pollen diet may provide a simple and effective solution to reduce disease and improve the health of economically and ecologically important pollinators.
Commercial bumblebees have become popular models to understand stressors and solutions for pollinator health, but few studies test whether results translate to other pollinators. Consuming sunflower pollen dramatically reduces infection by the gut parasite Crithidia bombi in commercially reared Bombus impatiens . We assessed the effect of sunflower pollen on infection in wild B. impatiens , Bombus griseocollis, Bombus bimaculatus and Bombus vagans . We also asked how pollen diet (50% sunflower pollen versus wildflower pollen) and infection (yes/no) affected performance in wild B. impatiens microcolonies. Compared to controls, sunflower pollen dramatically reduced Crithidia infection in commercial and wild B. impatiens, had similar but less dramatic effects in B. bimaculatus and B. vagans , and no effect in B. griseocollis . Bombus impatiens, B. bimaculatus and B. vagans are in the same subgenus, suggesting that responses to sunflower pollen may be phylogenetically conserved. In microcolonies, 50% sunflower pollen reduced infection compared to wildflower pollen, but also reduced reproduction. Sunflower pollen could control Crithidia infections in B. impatiens and potentially close relatives, but may hinder reproduction if other resources are scarce. We caution that research using managed bee species, such as B. impatiens , be interpreted carefully as findings may not relate to all bee species.
Understanding the microbial ecology of the mouth is fundamental for understanding human physiology. In this study, metapangenomics demonstrated that different Veillonella species have clear ecological preferences in the oral cavity of healthy humans, validating the site specialist hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.