Pyriproxyfen is a broad-spectrum insect growth regulator (IGR) with insecticidal activity against public health insect pests such as houseflies, mosquitoes and cockroaches. In agriculture and horticulture, pyriproxyfen has registered uses for the control of scale, whitefly, aphids and fire ants. It is used extensively worldwide, particularly in developing countries, although it has no significant uses in California. Pyriproxyfen acts on the endocrine system of insects by mimicking the juvenile hormone, thereby hindering molting and subsequently inhibiting reproduction. IGRs are unique in that they are specific for insects and have very low mammalian toxicity. As such, pyriproxyfen has received U.S. EPA status as a Reduced Risk insecticide and an organophosphate alternative and is the only pesticide approved by the World Health Organization (WHO) for treatment of potable water against mosquito. However, concerns about its environmental persistence and latent toxicity to nontarget organisms have been recently raised and discussed. In this context, a detailed review of the environmental fate and physicochemical properties of pyriproxyfen from the available scientific literature and from data gathered in its development and testing is needed. This paper gathers, combines, and abridges important environmental fate and property data on pyriproxyfen for academics, environmental scientists and agricultural professionals needing ready access to this information.
The performance of a commercially available microtiter plate ELISA kit for the determination of diazinon was evaluated for sensitivity, selectivity, intra-assay repeatability, accuracy, and matrix effects in fortified distilled water and filtered and unfiltered environmental surface water samples. Repeatability and reproducibility studies show that the kit satisfies current EPA criteria for the assessment of analytical methods. Mean recoveries from spiked samples averaged 80.3, 95.5, and 103.5% from distilled, unfiltered surface, and filtered surface waters, respectively. The experimentally determined method detection limit (MDL) for the commercial diazinon microtiter plate format (0.0159 microg L(-)(1)) was comparable to the least detectable dose (LDD) established by the manufacturer (0.022 microg L(-)(1)). Specificity studies indicate that the diazinon polyclonal antibody can readily distinguish the target compound from other structurally similar organophosphorus analogues, with the exception of diazoxon. Cross-reactivity with the oxon was approximately 29%, while reactivity with pirimiphos-methyl, pirimiphos-ethyl, and chlorpyrifos-ethyl was negligible. A slight matrix effect was discovered to be present in both filtered and unfiltered environmental water matrixes, but its effect on the immunoassays is insignificant within experimental error. For validation of the microtiter plate ELISA format, environmental surface and storm runoff water samples were collected, split, and analyzed directly by ELISA and by liquid-liquid extraction followed by GC (California State Department of Food and Agriculture method EM 46.0). Results of the two analytical methods were then compared statistically. A close correlation was found between methods for unspiked and untreated river water samples (r = 0.969) while a much less robust correlation was obtained for runoff waters (r = 0.728). Results from runoff waters exhibit a particularly high positive bias for the ELISA method relative to the GC method. Cross-reactivity of diazoxon and probably other unidentified cross-reacting components may be responsible for the exaggerated account of the target analyte in surface and runoff waters. While excellent for screening purposes, further study is required to elucidate and quantify the factors responsible for the consistent overestimation of ELISA results before the kit can be employed routinely for regulatory compliance monitoring.
A methodology for the estimation of Hammett substituent constants from computational-based descriptors utilizing quantitative structure activity/property relationships (QSAR/QSPR) formalism is presented. Electronic descriptors derived from quantum chemical calculations and molecular topology were used to generate computational-based analogues of empirical Hammett substituent constants from statistical analysis. Global quantum chemical reaction indices were drawn from frontier orbital theory and density functional theory and formulated from AM1-based calculations. A localized index based on the electrotopological state index was used to encode information on individual group properties. From a training set consisting of 150 meta and para-substituted benzoic acids, statistical analysis of computational-based descriptors as a function of empirical substituent constants yielded a five-parameter QSAR/QSPR model which generates computational-based constants exhibiting a strong correlation with empirical values (r2 = 0.958). Both internal (PRESS) and external (independent testing set of benzoic acids) validation procedures suggest that the electronic effects QSAR/QSPR model derived in this work from computational-based parameters is a statistically viable paradigm. Both predicted and empirical constants were used in Hammett-type validation analyses as functions of chemical, biological, and spectroscopic data for thirty structurally diverse meta and parasubstituted aromatic testing sets. Statistical measures of ensuing correlations were examined and compared, and the empirical and predicted results were of similar quality. Validation results reveal that a large number of computational-based substituent constants can be accurately estimated from semiempirical AM1 frontier orbital energies and electronic structure information obtained directly from substituted benzoic acids without the aid of empirical parametrization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.