Background and objectives Masked hypertension and elevated nighttime BP are associated with increased risk of hypertensive target organ damage and adverse cardiovascular and renal outcomes in patients with normal kidney function. The significance of masked hypertension for these risks in patients with CKD is less well defined. The objective of this study was to evaluate the association between masked hypertension and kidney function and markers of cardiovascular target organ damage, and to determine whether this relationship was consistent among those with and without elevated nighttime BP.Design, setting, participants, & measurements This was a cross-sectional study. We performed 24-hour ambulatory BP in 1492 men and women with CKD enrolled in the Chronic Renal Insufficiency Cohort Study. We categorized participants into controlled BP, white-coat, masked, and sustained hypertension on the basis of clinic and 24-hour ambulatory BP. We obtained echocardiograms and measured pulse wave velocity in 1278 and 1394 participants, respectively. ResultsThe percentages of participants with controlled BP, white-coat, masked, and sustained hypertension were 49.3%, 4.1%, 27.8%, and 18.8%, respectively. Compared with controlled BP, masked hypertension independently associated with low eGFR (23.2 ml/min per 1.73 m 2 ; 95% confidence interval, 25.5 to 20.9), higher proteinuria (+0.9 unit higher in log 2 urine protein; 95% confidence interval, 0.7 to 1.1), and higher left ventricular mass index (+2.52 g/m 2.7 ; 95% confidence interval, 0.9 to 4.1), and pulse wave velocity (+0.92 m/s; 95% confidence interval, 0.5 to 1.3). Participants with masked hypertension had lower eGFR only in the presence of elevated nighttime BP (23.6 ml/min per 1.73 m 2 ; 95% confidence interval, 26.1 to 21.1; versus 21.4 ml/min per 1.73 m 2 ; 95% confidence interval, 26.9 to 4.0, among those with nighttime BP ,120/70 mmHg; P value for interaction with nighttime systolic BP 0.002).Conclusions Masked hypertension is common in patients with CKD and associated with lower eGFR, proteinuria, and cardiovascular target organ damage. In patients with CKD, ambulatory BP characterizes the relationship between BP and target organ damage better than BP measured in the clinic alone.
Background Elevated total serum alkaline phosphatase (ALP) levels have been associated with mortality in the general population and in dialysis patients. Study Design Retrospective cohort study. Setting & Participants 28,678 patients with chronic kidney disease (CKD) stages 3 and 4 (estimated glomerular filtration rate [eGFR], 15–59 ml/min/1.73 m2) were identified using the Cleveland Clinic Chronic Kidney Disease Registry. CKD was defined as two eGFR values <60 ml/min/1.73 m2 drawn >90 days apart using the Chronic Kidney Disease Epidemiology Collaboration creatinine equation. Predictor ALP levels measured using the calorimetric assay was examined as quartiles (quartile 1, <66 U/L; Q2, 66–81 U/L; Q3, 82–101 U/L; and Q4, ≥102 U/L) and as a continuous measure. Outcomes & Measurements All-cause mortality and ESRD were ascertained using the Social Security Death Index and US Renal Data System. Results After a median follow up of 2.2 years, 588 patients progressed to ESRD and 4,755 died. There was a graded increase in the risk for mortality with higher ALP quartiles (Q2, Q3, Q4) when compared to the reference quartile (Q1) after adjusting for demographics, comorbid conditions, use of relevant medications and liver function tests. The highest quartile of ALP was associated with a hazard ratio for ESRD of 1.38 (95% CI, 1.09–1.76). Each 1-standard deviation (42.7 U/L) higher ALP level was associated with 15% (95% CI, 1.09–1.22) and 16% (95% CI, 1.14–1.18) increased risk of ESRD and mortality respectively. Limitations Single center observational study, lack complete data including PTH for all study participants and attrition bias. Conclusions Higher serum ALP levels in CKD stages 3–4 were independently associated with all-cause mortality and ESRD.
The Chronic Renal Insufficiency Cohort (CRIC) Study is an ongoing, multicenter, longitudinal study of nearly 5500 adults with CKD in the United States. Over the past 10 years, the CRIC Study has made significant contributions to the understanding of factors associated with CKD progression. This review summarizes findings from longitudinal studies evaluating risk factors associated with CKD progression in the CRIC Study, grouped into the following six thematic categories: (1) sociodemographic and economic (sex, race/ethnicity, and nephrology care); (2) behavioral (healthy lifestyle, diet, and sleep); (3) genetic (apoL1, genome-wide association study, and renin-angiotensin-aldosterone system pathway genes); (4) cardiovascular (atrial fibrillation, hypertension, and vascular stiffness); (5) metabolic (fibroblast growth factor 23 and urinary oxalate); and (6) novel factors (AKI and biomarkers of kidney injury). Additionally, we highlight areas where future research is needed, and opportunities for interdisciplinary collaboration.
Diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease (ESKD) in the United States. Risk factor modification, such as tight control of blood glucose, management of hypertension and hyperlipidemia, and the use of renin–angiotensin–aldosterone system (RAAS) blockade have been proven to help delay the progression of DKD. In recent years, new therapeutics including sodium-glucose transport protein 2 (SGLT2) inhibitors, endothelin antagonists, glucagon like peptide-1 (GLP-1) agonists, and mineralocorticoid receptor antagonists (MRA), have provided additional treatment options for patients with DKD. This review discusses the various treatment options available to treat patients with diabetic kidney disease.
In the United States, hemodialysis remains the most common treatment modality for kidney failure, chosen by almost 90% of incident patients. A functioning vascular access is key to providing adequate hemodialysis therapy. Recently, major innovations in devices and technology for hemodialysis vascular access care have rapidly changed the landscape. Novel endovascular devices for creation of arteriovenous fistulas may offer a solution to the barriers encountered in initiating maintenance hemodialysis with a permanent vascular access rather than a central venous catheter (CVC). Furthermore, in the prevalent hemodialysis population, the minimally invasive endovascular arteriovenous fistula procedure should help improve long wait times for vascular access creation, which remains a major barrier to reducing CVC dependence. Bioengineered grafts are being developed and may offer another option to polytetrafluoroethylene grafts. Early studies with these biocompatible grafts are promising, as additional studies continue to evaluate their clinical outcomes in comparison to cryopreserved or synthetic options. Prolonging the vascular access patency with appropriate use of devices such as drug-coated balloons and stent grafts may complement the novel techniques of creating arteriovenous access. Finally, innovative solutions to treat stenosed and occluded thoracic central veins can provide an approach to creating a vascular access and allow patients with exhausted vasculature to remain on hemodialysis. The robust developments in hemodialysis vascular access are likely to change practice patterns in the near future.Complete author and article information provided before references.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.