The preBötzinger complex (preBötC), located within the ventral respiratory column, produces inspiratory bursts in varying degrees of synchronization/amplitude. This wide range of population burst patterns reflects the flexibility of the preBötC neurons, which is expressed in variations in the onset/offset times of their activations and their activity during the population bursts, with respiratory neurons exhibiting a large cycle-to-cycle timing jitter both at the population activity onset and at the population activity peak; suggesting that respiratory neurons are stochastically activated before and during the inspiratory bursts. However, it is still unknown whether this stochasticity is maintained while evaluating the coactivity of respiratory neuronal ensembles. Moreover, the preBötC topology also remains unknown. Here, by simultaneously recording tens of preBötC neurons and using coactivation analysis during the inspiratory periods, we found that the preBötC has a scale-free configuration (mixture of not many highly connected nodes -hubs- with abundant poorly connected elements) exhibiting the rich-club phenomenon (hubs more likely interconnected with each other). PreBötC neurons also produce multineuronal activity patterns (MAPs) that are highly stable and change during the hypoxia-induced reconfiguration. Moreover, preBötC contains a coactivating core network shared by all its MAPs. Finally, we found a distinctive pattern of sequential coactivation of core network neurons at the beginning of the inspiratory periods, indicating that, when evaluated at the multicellular level, the coactivation of respiratory neurons seems not to be stochastic.
Despite that astrocytes and microglia do not communicate by electrical impulses, they can efficiently communicate among them, with each other and with neurons, to participate in complex neural functions requiring broad cell-communication and long-lasting regulation of brain function. Glial cells express many receptors in common with neurons; secrete gliotransmitters as well as neurotrophic and neuroinflammatory factors, which allow them to modulate synaptic transmission and neural excitability. All these properties allow glial cells to influence the activity of neuronal networks. Thus, the incorporation of glial cell function into the understanding of nervous system dynamics will provide a more accurate view of brain function. Our current knowledge of glial cell biology is providing us with experimental tools to explore their participation in neural network modulation. In this chapter, we review some of the classical, as well as some recent, pharmacological tools developed for the study of astrocyte's influence in neural function. We also provide some examples of the use of these pharmacological agents to understand the role of astrocytes in neural network function and dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.