Long-term memory of cocaine-associated context was established by conditioned place preference learning. After 1 week, exposure to context in the absence of cocaine (memory retrieval) was paired with one of the following treatments: saline, scopolamine (muscarinic acetylcholine receptor antagonist), dizocilpine (MK-801; noncompetitive N-methyl-D-aspartate antagonist) or D-cycloserine (partial N-methyl-D-aspartate agonist). In subsequent conditioned place preference tests, place preference was suppressed in the drug-treated groups but not saline-treated groups. Results suggest that the amnesic agents, scopolamine and MK-801, disrupted reconsolidation of cocaine-associated contextual memory. In contrast, the mnemonic agent D-cycloserine might have facilitated extinction learning during context exposure in the absence of cocaine. Challenge administration of cocaine reinstated place preference in all groups except the MK-801 group, suggesting that suppression of conditioned response may or may not suppress memory evoked by drug-context reexposure.
The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic plasticity, including the late phase of long-term potentiation (LTP) and formation of long-term memory (LTM). Evidence has implicated NO signaling in synaptic plasticity and LTM formation following fear conditioning, yet little is known about the role of the nNOS gene in fear learning. Using knockout (KO) mice with targeted mutation of the nNOS gene and their wild-type (WT) counterparts, the role of NO signaling in fear conditioning was investigated. Plasma levels of the stress hormone corticosterone were measured to determine the relationship between physiological and behavioral response to fear conditioning. Contextual fear learning was severely impaired in male and female nNOS KO mice compared with WT counterparts; cued fear learning was slightly impaired in nNOS KO mice. Sex-dependent differences in both contextual and cued fear learning were not observed in either genotype. Deficits in contextual fear learning in nNOS KO mice were partially overcome by multiple trainings. A relationship between increase in plasma corticosterone levels following footshock administration and the magnitude of contextual, but not cued freezing was also observed. Results suggest that the nNOS gene contributes more to optimal contextual fear learning than to cued fear learning, and therefore, inhibition of the nNOS enzyme may ameliorate context-dependent fear response.Anxiety disorders, such as post-traumatic stress disorder (PTSD), constitute the most prevalent mental illnesses in the United States, costing nearly one-third of the country's total health bill (Greenberg et al. 1999). The treatment of these disorders requires overcoming complications such as reluctance to seek mental health treatment and an extremely high comorbidity rate with other affective disorders, reaching 80% (Brady 1997;Solomon and Davidson 1997). Emerging evidence suggests that dysfunctions underlying acquired anxiety and PTSD include an abnormal reaction to stress, which is mediated by specific neurochemical and neuroanatomical substrates (Yehuda and McFarlane 1995;Adamec 1997). Pharmacotherapies that target neuronal signaling molecules, such as nitric oxide (NO), may play a role in the treatment of these disorders.In the brain, N-methyl-D-aspartate receptor (NMDAR) activation and calcium influx into the cell activates the neuronal nitric oxide synthase (nNOS) enzyme to produce NO, which has the role of retrograde messenger (Snyder 1992). NO is involved in memory formation and synaptic plastic events such as late-phase long-term potentiation (LTP) (Lu et al. 1999;Arancio et al. 2001;Puzzo et al. 2006). Behavioral evidence in invertebrates (Lewin and Walters 1999;Muller 2000;Kemenes et al. 2002;Matsumoto et al. 2006) ...
Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning a) rescued contextual fear conditioning of nNOS KO mice, and b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation, and b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice.
These findings suggest that neuronal NO and its downstream second messenger cGMP are important for acquisition and subsequent consolidation of LTM of contextual fear conditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.