BackgroundFalls are a prevalent issue in the geriatric population and can result in damaging physical and psychological consequences. Fall risk assessment can provide information to enable appropriate interventions for those at risk of falling. Wearable inertial-sensor-based systems can provide quantitative measures indicative of fall risk in the geriatric population.MethodsForty studies that used inertial sensors to evaluate geriatric fall risk were reviewed and pertinent methodological features were extracted; including, sensor placement, derived parameters used to assess fall risk, fall risk classification method, and fall risk classification model outcomes.ResultsInertial sensors were placed only on the lower back in the majority of papers (65%). One hundred and thirty distinct variables were assessed, which were categorized as position and angle (7.7%), angular velocity (11.5%), linear acceleration (20%), spatial (3.8%), temporal (23.1%), energy (3.8%), frequency (15.4%), and other (14.6%). Fallers were classified using retrospective fall history (30%), prospective fall occurrence (15%), and clinical assessment (32.5%), with 22.5% using a combination of retrospective fall occurrence and clinical assessments. Half of the studies derived models for fall risk prediction, which reached high levels of accuracy (62-100%), specificity (35-100%), and sensitivity (55-99%).ConclusionsInertial sensors are promising sensors for fall risk assessment. Future studies should identify fallers using prospective techniques and focus on determining the most promising sensor sites, in conjunction with determination of optimally predictive variables. Further research should also attempt to link predictive variables to specific fall risk factors and investigate disease populations that are at high risk of falls.
Freezing of gait (FOG) is a serious gait disturbance, common in mid- and late-stage Parkinson’s disease, that affects mobility and increases fall risk. Wearable sensors have been used to detect and predict FOG with the ultimate aim of preventing freezes or reducing their effect using gait monitoring and assistive devices. This review presents and assesses the state of the art of FOG detection and prediction using wearable sensors, with the intention of providing guidance on current knowledge, and identifying knowledge gaps that need to be filled and challenges to be considered in future studies. This review searched the Scopus, PubMed, and Web of Science databases to identify studies that used wearable sensors to detect or predict FOG episodes in Parkinson’s disease. Following screening, 74 publications were included, comprising 68 publications detecting FOG, seven predicting FOG, and one in both categories. Details were extracted regarding participants, walking task, sensor type and body location, detection or prediction approach, feature extraction and selection, classification method, and detection and prediction performance. The results showed that increasingly complex machine-learning algorithms combined with diverse feature sets improved FOG detection. The lack of large FOG datasets and highly person-specific FOG manifestation were common challenges. Transfer learning and semi-supervised learning were promising for FOG detection and prediction since they provided person-specific tuning while preserving model generalization.
Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity—0.114 x Eyes Closed Vector Sum Magnitude Velocity—2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older people at risk of multiple falls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.