Due to the increase in digitalization Machine Learning (ML)algorithms bare high potentials for process optimization in the production quality-domain. Nowadays, ML-algorithms are hardly implemented in the production environment. In this paper, we present a tangible use case in which MLalgorithms are applied for predicting the quality of products in a process chain and present the lessons learned we extracted from the application. In the described project, the process of choosing ML-algorithms was a bottleneck. Therefore we describe a promising approach how a decision making tool can help selecting ML-algorithms problem-specifically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.