Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with visible, baryonic matter. Searching for the extremely weak signals produced by this dark matter strongly motivate the development of new, ultra-sensitive detector technologies. Paradigmatic advances in the control and readout of massive mechanical systems, in both the classical and quantum regimes, have enabled unprecedented levels of sensitivity. In this white paper, we outline recent ideas in the potential use of a range of solid-state mechanical sensing technologies to aid in the search for dark matter in a number of energy scales and with a variety of coupling mechanisms.
Quantum process tomography is a critical capability for building quantum computers, enabling quantum networks, and understanding quantum sensors. Like quantum state tomography, the process tomography of an arbitrary quantum channel requires a number of measurements that scales exponentially in the number of quantum bits affected. However, the recent field of shadow tomography, applied to quantum states, has demonstrated the ability to extract key information about a state with only polynomially many measurements. In this work, we apply the concepts of shadow state tomography to the challenge of characterizing quantum processes. We make use of the Choi isomorphism to directly apply rigorous bounds from shadow state tomography to shadow process tomography, and we find additional bounds on the number of measurements that are unique to process tomography. Our results, which include algorithms for implementing shadow process tomography, enable new techniques including evaluation of channel concatenation and the application of channels to shadows of quantum states. This provides a dramatic improvement for understanding large-scale quantum systems.
Atom interferometers provide a powerful means of realizing quantum coherent systems with increasingly macroscopic extent in space and time. These systems provide an opportunity for a variety of novel tests of fundamental physics, including ultralight dark matter searches and tests of modifications of gravity, using long drop times and microgravity environments. However, as experiments operate with longer periods of free fall and become sensitive to smaller background effects, key questions start to emerge about the fundamental limits to future atom interferometery experiments. We study the effects on atomic coherence from hard-to-screen backgrounds due to baths of ambient particles with long-range forces, such as gravitating baths and charged cosmic rays. Our approach -working in the Heisenberg picture for the atomic motion -makes proper inclusion of the experimental apparatus feasible and clearly shows how to handle long-range forces and preferred frame ambiguities. We find that these potential backgrounds are likely negligible for the next generation of interferometers, as aggressive estimates for the gravitational decoherence from a background bath of dark matter particles gives a decoherence timescale on the order of years.
Quantum process tomography is a critical capability for building quantum computers, enabling quantum networks, and understanding quantum sensors. Like quantum state tomography, the process tomography of an arbitrary quantum channel requires a number of measurements that scales exponentially in the number of quantum bits affected. However, the recent field of shadow tomography, applied to quantum states, has demonstrated the ability to extract key information about a state with only polynomially many measurements. In this work, we apply the concepts of shadow state tomography to the challenge of characterizing quantum processes. We make use of the Choi isomorphism to directly apply rigorous bounds from shadow state tomography to shadow process tomography, and we find additional bounds on the number of measurements that are unique to process tomography. Our results, which include algorithms for implementing shadow process tomography, enable new techniques including evaluation of channel concatenation and the application of channels to shadows of quantum states. This provides a dramatic improvement for understanding large-scale quantum systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.