Certain biomolecules have proven to be difficult to analyze by liquid chromatography (LC), especially under certain chromatographic conditions. The separation of proteins in aqueous mobile phases is one such example because there is the potential for both hydrophobic and ionic secondary interactions to occur with chromatographic hardware to the detriment of peak recovery, peak shape, and the overall sensitivity of the LC analysis. To decrease non-specific adsorption and undesired secondary interactions between column hardware and biomolecules, we have developed and applied a new hydrophilically modified hybrid surface (h-HST) for size exclusion chromatography (SEC) and anion exchange (AEX) separations of proteins and nucleic acids. This surface incorporates additional oxygen and carbon atoms onto an ethylene bridge hybrid siloxane polymer. As a result, it exhibits reduced electrostatic properties and hydrophilicity that facilitates challenging aqueous separations. Flow injection tests with a phosphate buffer showed superior protein recovery from an h-HST frit when compared to unmodified ethylene-bridged hybrid HST, titanium, stainless steel, and PEEK frits. When applied to SEC of rituximab, ramucirumab, and trastuzumab emtansine with a 50 mM ammonium acetate buffer, this new hydrophilic chromatographic hardware yielded improved monomer and aggregate recovery, higher plate numbers, and more symmetrical peaks. AEX columns also benefited from h-HST hardware. An acidic mAb (eculizumab) showed improved recovery, more stable retention, and a sharper peak when eluted from an h-HST versus SS column. Moreover, AEX separations of intact mRNA samples (Cas9 and EPO mRNA) were improved, where it was seen that h-HST column hardware provided higher sensitivity and more repeatable peak areas from injection to injection. As such, there is significant potential in the use of h-HST chromatographic hardware to facilitate more robust and more sensitive analyses for a multitude of challenging separations and analytes.
In the first part of the series, it was demonstrated that very fast (<30 s) separations of therapeutic protein species are feasible using ultra-short (5 × 2.1 mm) columns. In the second part, our purpose was to find the appropriate column length; therefore, a systematic study was performed using various custom-made prototype reversed-phase liquid chromatography (RPLC) columns ranging from 2 to 50 mm lengths. It was found that on a low dispersion ultrahigh-pressure liquid chromatography instrument, columns between 10 and 20 mm were most effective when made with 2.1 mm i.d. tubing. However, with the same LC instrument, 3 mm i.d. columns as short as ∼5 to 10 mm could be effectively used. In both cases, it has been found to be best to keep injection volumes below 0.6 μL, which presents a potential limit to further decreasing column length, given the current capabilities of autosampler instrumentation. The additional volume of the column hardware outside of the packed bed (extra-bed volume) of very small columns is also a limiting factor to decrease the column length. For columns shorter than 10 mm, columns’ extra-bed volume was seen to make considerable contributions to band broadening. However, the use of ultra-short columns seemed to be a very useful approach for RPLC of large proteins (>25 kDa) and could also work well for ∼12 kDa as the lowest limit of molecular mass. In summary, a renewed interest in the use of ultra-short columns is warranted, and additional method development will be to the benefit of the biopharmaceutical industry as there is an ever-increasing demand for faster, yet accurate assays (e.g., high-throughput screening) of proteins.
Interactions of certain analytes with metal surfaces in high performance liquid chromatography (HPLC) instruments and columns cause a range of deleterious effects, including peak broadening and tailing, low peak areas, and the formation of new peaks due to chemical reactions. To mitigate these effects, we have developed a novel surface modification technology in which a hybrid organic/inorganic surface based on an ethylene-bridged siloxane chemistry is applied to the metal components in HPLC instruments and columns. We demonstrate the impact of this technology on peak symmetry, peak area, and injection-to-injection and column-to-column reproducibility for several metal-sensitive analytes. We also show an example of the mitigation of an on-column oxidation reaction. A variant of this technology has recently been developed for size-exclusion chromatography of proteins. An example is shown demonstrating the use of this variant applied to size-exclusion columns for the separation of a monoclonal antibody monomer and higher molecular weight species. Together, these results highlight the importance of preventing interactions of analytes with metal surfaces in HPLC in order to achieve accurate and precise results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.