We have discovered that films of carbon single wall nanotubes (SWNTs) make excellent back contacts to CdTe devices without any modification to the CdTe surface. Efficiencies of SWNT-contacted devices are slightly higher than otherwise identical devices formed with standard Au/Cu back contacts. The SWNT layer is thermally stable and easily applied with a spray process, and SWNT-contacted devices show no signs of degradation during accelerated life testing.
We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm) can be produced in a ∼40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm) to full modules (1 m). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.
A novel approach to fabricate CuIn(S,Se) 2 (CIS) thin films through ultrasonically spraying a hydrazine-based precursor solution onto a heated substrate is reported. The effects of the composition of the precursor solutions and the deposition temperature on the CIS film properties were investigated by comparing thin films fabricated using aqueous metal salt solution, anhydrous hydrazine solution, and hydrazine hydrate solution at various deposition temperatures. Crystallite size and texture coefficient in the preferred (112) orientation in the sprayed films increased when the aqueous solution was replaced by hydrazine-based solutions. Additionally, the hydrazine-based precursor solutions resulted in films with better surface smoothness and compositional uniformity than those fabricated using water-based solutions and the hydrazine hydrate solution resulting in the smoothest, most uniform films. The sprayed films were used to fabricate preliminary solar cells that demonstrated a modest photovoltaic response. With optimization, the synthesis of high-quality CIS films by spray pyrolysis from a hydrazine hydrate solution could demonstrate the potential for a low-cost, high-throughput manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.