The novel contribution in this manuscript is an expansion of the current state-of-the-art in the geometric installation of control moment gyroscopes beyond the benchmark symmetric skewed arrays and the four asymmetric arrays presented in recent literature. The benchmark pyramid symmetrically skewed at 54.73 degrees mandates significant attention to singularity avoidance, escape, and penetration, while the most recent four asymmetric arrays are strictly useful in instances where space is available to mount at least one gyro orthogonal to the others. Skewed arrays of gyros and the research-benchmark are introduced, followed by the present-day box-90 and “roof” configurations, where the roof configuration is the first prevalently used asymmetric geometry. Six other asymmetric options in the most recent literature are introduced, where four of the six options are obviously quite useful. From this inspiration, several dozen discrete options for asymmetric installations are critically evaluated using two figures of merit: maximum momentum (saturation) and maximum singularity-free momentum. Furthermore, continuous surface plots are presented to provide readers with countless (infinite) options for geometric installations. The manuscript firmly establishes many useful options for engineers who learn that the physical space on their spacecraft is insufficient to permit standard installations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.