Rhabdomyosarcoma is the most common soft tissue sarcoma in children and young adults. Rhabdomyosarcomas are skeletal muscle-like tumours that typically arise in muscle beds, and express key myogenic regulatory factors. However, their developmental program remains blocked in the proliferative phase with cells unable to exit the cell cycle to fuse into myotubes. Recently, we uncovered a key role for the RNA-binding protein Staufen1 during myogenic differentiation through the regulation of c-myc translation. Given the known implication of c-myc in rhabdomyosarcoma, we hypothesized in the current work that Staufen1 controls rhabdomyosarcoma tumorigenesis. Here, we report for the first time the novel role of Staufen1 in cancer, specifically in rhabdomyosarcoma. We demonstrate that Staufen1 is markedly upregulated in human rhabdomyosarcoma tumours and cell lines as compared to normal skeletal muscle. Moreover, we show that Staufen1 promotes the tumorigenesis of embryonal and alveolar rhabdomyosarcoma subtypes both in cell culture and in animal models. Finally, our data demonstrate that Staufen1 has differential roles in embryonal versus alveolar rhabdomyosarcoma through the control of proliferative and apoptotic pathways, respectively. Together, these results provide the first evidence for Staufen1’s direct implication in cancer biology. Accordingly, Staufen1 thus represents a novel target for the development of future therapeutic strategies for rhabdomyosarcoma.
The RT-qPCR panel was able to identify pathogens in a high proportion of respiratory samples. The panel detected more positive specimens than the methods in use at our hospital. The pre-made panel format was easy to use and rapid, with results available in approximately 90 minutes. We now plan to determine if use of this panel improves patient care and antibiotic stewardship.
BackgroundOtitis media with effusion (OME) causes significant morbidity in children, but the causes of OME and methods for prevention are unclear. To look for potential infectious etiologies, we performed a pilot study using multiple-target real-time polymerase chain reaction (qPCR) for 27 infectious agents, including nine bacterial organisms and 18 respiratory viruses in middle ear fluids (MEFs) from children with OME. QPCR was also performed for the 13 Streptococcus pneumoniae serotypes contained in the current vaccine.ResultsForty-eight MEF samples were obtained and qPCR detected bacterial nucleic acid (NA) in 39/48 (81 %) and viral NA in 7/48 (15 %). Alloiococcus otitidis and S. pneumoniae were both detected in 15/48 (31 %) MEFs, followed by M. catarrhalis in 14/48 (29 %), H. influenzae in 5/48 (10 %) and M. pneumoniae in 4/48 (8 %). Rhinoviruses were most common virus type detected, found in 4/48 (8 %) MEFs. Serotypes included in the current 13-serotype vaccine were detected in only 3/15 (20 %) S. pneumoniae qPCR-positive MEFs.ConclusionsBacteria may play an important role in OME, since over 80 % of MEFs contained bacterial NA. Further research into the role of A. otitidis in OME will be helpful. Serotypes of S. pneumoniae not included in the current 13-serotype vaccine may be involved in OME. Larger studies of OME S. pneumoniae serotypes are needed to help determine which additional serotypes should be included in future vaccine formulations in order to try to prevent OME.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.