We provide a comprehensive expression map of the different genes (TIR1/AFBs, ARFs and Aux/IAAs) involved in the signalling pathway regulating gene transcription in response to auxin in the shoot apical meristem (SAM).We demonstrate a relatively simple structure of this pathway using a high-throughput yeast two-hybrid approach to obtain the Aux/IAA-ARF full interactome.The topology of the signalling network was used to construct a model for auxin signalling and to predict a role for the spatial regulation of auxin signalling in patterning of the SAM.We used a new sensor to monitor the input in the auxin signalling pathway and to confirm the model prediction, thus demonstrating that auxin signalling is essential to create robust patterns at the SAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.