From the customer's perspective, the appeal of electric vehicles depends on the simplicity and ease of their use, such as flexible access to electric power from the grid to recharge the batteries of their vehicles. Therefore, the expansion of charging infrastructure will be an important part of electric mobility. The related charging infrastructure is a big challenge for the load capacity of the grid connection without additional intelligent charge management: if the control of the charging process is not implemented, it is necessary to ensure the total of the maximum output of all xEVs at the grid connection point, which requires huge costs. This paper proposes to build a prediction module for forecasting dynamic charging load using machine learning (ML) techniques. The module will be integrated into a real charge management concept with optimization procedures for controlling the dynamic load point. The value of load forecasting through practical load data of a car park were taken to illustrate the proposed methods. The prediction performance of different ML methods under the same data condition (e.g., holiday data) are compared and evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.