The yeast Gis1 protein is a transcriptional regulator belonging to the JMJD2/KDM4 subfamily of demethylases that contain a JmjC domain, which are highly conserved from yeast to humans. They have important functions in histone methylation, cellular signaling and tumorigenesis. Besides serving as a cofactor in many proteins, heme is known to directly regulate the activities of proteins ranging from transcriptional regulators to potassium channels. Here, we report a novel mechanism governing heme regulation of Gis1 transcriptional and histone demethylase activities. We found that two Gis1 modules, the JmjN + JmjC domain and the zinc finger (ZnF), can bind to heme specifically in vitro. In vivo functional analysis showed that the ZnF, not the JmjN + JmjC domain, promotes heme activation of transcriptional activity. Likewise, measurements of the demethylase activity of purified Gis1 proteins showed that full-length Gis1 and the JmjN + JmjC domain both possess demethylase activity. However, heme potentiates the demethylase activity of full-length Gis1, but not that of the JmjN + JmjC domain, which can confer heme activation of transcriptional activity in an unrelated protein. These results demonstrate that Gis1 represents a novel class of multi-functional heme sensing and signaling proteins, and that heme binding to the ZnF stimulates Gis1 demethylase and transcriptional activities.
The study of heme is important to our understanding of cellular bioenergetics, especially in cancer cells. The function of heme as a prosthetic group in proteins such as cytochromes is now well-documented. Less is known, however, about its role as a regulator of metabolic and energetic pathways. This is due in part to some inherent difficulties in studying heme. Due to its slightly amphiphilic nature, heme is a “sticky” molecule which can easily bind non-specifically to proteins. In addition, heme tends to dimerize, oxidize, and aggregate in purely aqueous solutions; therefore, there are constraints on buffer composition and concentrations. Despite these difficulties, our knowledge of heme’s regulatory role continues to grow. This review sums up the latest methods used to study reversible heme binding. Heme-regulated proteins will also be reviewed, as well as a system for imaging the cellular localization of heme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.