Cancer stem cells (CSCs) have been hypothesized to represent the driving force behind tumour progression and metastasis, making them attractive cancer targets. However, conclusive experimental evidence for their functional relevance is still lacking for most malignancies. Here we show that the leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) identifies intestinal CSCs in mouse tumours engineered to recapitulate the clinical progression of human colorectal cancer. We demonstrate that selective Lgr5 cell ablation restricts primary tumour growth, but does not result in tumour regression. Instead, tumours are maintained by proliferative Lgr5 cells that continuously attempt to replenish the Lgr5 CSC pool, leading to rapid re-initiation of tumour growth upon treatment cessation. Notably, CSCs are critical for the formation and maintenance of liver metastasis derived from colorectal cancers. Together, our data highlight distinct CSC dependencies for primary versus metastasic tumour growth, and suggest that targeting CSCs may represent a therapeutic opportunity for managing metastatic disease.
The kinases PERK and IRE1 alleviate endoplasmic reticulum (ER) stress by orchestrating the unfolded protein response (UPR). If stress mitigation fails, PERK promotes cell death by activating pro-apoptotic genes, including death receptor 5 (DR5). Conversely, IRE1-which harbors both kinase and endoribonuclease (RNase) modules-blocks apoptosis through regulated IRE1-dependent decay (RIDD) of DR5 mRNA. Under irresolvable ER stress, PERK activity persists, whereas IRE1 paradoxically attenuates, by mechanisms that remain obscure. Here, we report that PERK governs IRE1's attenuation through a phosphatase known as RPAP2 (RNA polymerase II-associated protein 2). RPAP2 reverses IRE1 phosphorylation, oligomerization, and RNase activation. This inhibits IRE1-mediated adaptive events, including activation of the cytoprotective transcription factor XBP1s, and ER-associated degradation of unfolded proteins. Furthermore, RIDD termination by RPAP2 unleashes DR5-mediated caspase activation and drives cell death. Thus, PERK attenuates IRE1 via RPAP2 to abort failed ER-stress adaptation and trigger apoptosis.
Although antibiotics may prevent some patients from appendectomies, surgery represents the definitive, one-time only treatment with a well-known risk profile, whereas the long-term impact of antibiotic treatment on patient quality of life and health care costs is unknown. This systematic review and meta-analysis helps physicians and patients in choosing between treatment options depending on whether they are risk averse or risk takers.
Multiple myeloma (MM) arises from malignant immunoglobulin (Ig)-secreting plasma cells and remains an incurable, often lethal disease despite therapeutic advances. The unfolded-protein response sensor IRE1α supports protein secretion by deploying a kinase–endoribonuclease module to activate the transcription factor XBP1s. MM cells may co-opt the IRE1α–XBP1s pathway; however, the validity of IRE1α as a potential MM therapeutic target is controversial. Genetic disruption of IRE1α or XBP1s, or pharmacologic IRE1α kinase inhibition, attenuated subcutaneous or orthometastatic growth of MM tumors in mice and augmented efficacy of two established frontline antimyeloma agents, bortezomib and lenalidomide. Mechanistically, IRE1α perturbation inhibited expression of key components of the endoplasmic reticulum-associated degradation machinery, as well as secretion of Ig light chains and of cytokines and chemokines known to promote MM growth. Selective IRE1α kinase inhibition reduced viability of CD138+ plasma cells while sparing CD138− cells derived from bone marrows of newly diagnosed or posttreatment-relapsed MM patients, in both US- and European Union-based cohorts. Effective IRE1α inhibition preserved glucose-induced insulin secretion by pancreatic microislets and viability of primary hepatocytes in vitro, as well as normal tissue homeostasis in mice. These results establish a strong rationale for developing kinase-directed inhibitors of IRE1α for MM therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.