Previously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk loci. We aimed to more completely incorporate HLA alleles, their interactions, and recently discovered non-HLA loci into an improved T1D GRS (termed the "T1D GRS2") to better discriminate diabetes subtypes and to predict T1D in newborn screening studies. RESEARCH DESIGN AND METHODS In 6,481 case and 9,247 control subjects from the Type 1 Diabetes Genetics Consortium, we analyzed variants associated with T1D both in the HLA region and across the genome. We modeled interactions between variants marking strongly associated HLA haplotypes and generated odds ratios to create the improved GRS, the T1D GRS2. We validated our findings in UK Biobank. We assessed the impact of the T1D GRS2 in newborn screening and diabetes classification and sought to provide a framework for comparison with previous scores. RESULTS The T1D GRS2 used 67 single nucleotide polymorphisms (SNPs) and accounted for interactions between 18 HLA DR-DQ haplotype combinations. The T1D GRS2 was highly discriminative for all T1D (area under the curve [AUC] 0.92; P < 0.0001 vs. older scores) and even more discriminative for early-onset T1D (AUC 0.96). In simulated newborn screening, the T1D GRS2 was nearly twice as efficient as HLA genotyping alone and 50% better than current genetic scores in general population T1D prediction. CONCLUSIONS An improved T1D GRS, the T1D GRS2, is highly useful for classifying adult incident diabetes type and improving newborn screening. Given the cost-effectiveness of SNP genotyping, this approach has great clinical and research potential in T1D. Type 1 diabetes (T1D) involves autoimmune destruction of insulin-producing pancreatic b-cells. While prominent in childhood, it may present at any age (1). Measurement of islet autoantibodies (AAb) in venous blood can reveal active disease years before the clinical diagnosis (2). Early, preclinical identification of T1D can
Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (−3.2 SD score vs. −2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man. (8-12). In contrast, abnormalities in chromosome 6q24 are the most common cause of TNDM (13), followed by mutations in the KCNJ11 and ABCC8 genes (14). Despite these advances, the etiology of neonatal diabetes is still not known in at least 30% of patients with PNDM, suggesting other genetic causes are still to be found (9).Insulin is secreted from islet beta cells of the pancreas. Insufficient secretion of insulin results in hyperglycemia and diabetes, whereas excessive secretion results in hypoglycemia. Insulin biosynthesis and secretion are therefore tightly regulated to maintain blood glucose levels within a narrow physiological range. Extensive studies have dissected an array of cis sequence elements in the INS promoter region and their cognate DNA binding factors, which together ensure the cellular specificity and rate of INS transcription (15)(16)(17)(18)(19)(20)(21)(22). In addition, insulin biosynthesis is strongly dependent on posttranscriptional regulatory mechanisms, including the modulation of translation and stability (23-25). The latter is largely mediated through sequences located in the untranslated regions of INS transcripts (26-28).
OBJECTIVE-Mutations in the human HNF4A gene encoding the hepatocyte nuclear factor (HNF)-4␣ are known to cause maturity-onset diabetes of the young (MODY), which is characterized by autosomal-dominant inheritance and impaired glucose-stimulated insulin secretion from pancreatic -cells. HNF-4␣ has a key role in regulating the multiple transcriptional factor networks in the islet. Recently, heterozygous mutations in the HNF4A gene were reported to cause transient hyperinsulinemic hypoglycemia associated with macrosomia.RESEARCH DESIGN AND METHODS-Three infants presented with macrosomia and severe hypoglycemia with a positive family history of MODY. The hypoglycemia was confirmed to be due to hyperinsulinism, and all three patients required diazoxide therapy to maintain normoglycemia. Two of the three infants are still requiring diazoxide therapy at 8 and 18 months, whereas one of them had resolution of hyperinsulinemic hypoglycemia at 32 months of age.RESULTS-Sequencing of the HNF4A gene identified heterozygous mutations in all three families. In family 1, a frameshift mutation L330fsdel17ins9 (c.987 1003del17ins9; p.Leu330fs) was present in the proband; a mutation affecting the conserved A nucleotide of the intron 2 branch site (c.264 -21AϾG) was identified in the proband of family 2; and finally a nonsense mutation, Y16X (c.48CϾG, p.Tyr16X), was found in the proband of family 3. (1,2). HNF-4␣ is a transcription factor of the nuclear hormone receptor superfamily and is expressed in liver, kidney, gut, and pancreatic islets (3). It plays a key role in the regulation of pancreatic insulin secretion. Loss-of-function HNF4A mutations have been identified in maturity-onset diabetes of the young (MODY) families in both coding and regulatory regions of the gene, including the P2 promoter region, which is suggested to be the primary transcriptional start site used in -cells (4,5). MODY is characterized by an autosomal-dominant inheritance pattern and impaired glucose-stimulated insulin secretion from pancreatic -cells (4). CONCLUSIONS-HeterozygousThe finding of transient mild hyperinsulinemic hypoglycemia is unexpected, since heterozygous mutations in the HNF4A gene lead to loss of glucose-induced insulin secretion with glucose intolerance in these patients. We now extend the observations of two previous studies (1,2) and report that heterozygous HNF4A mutations can cause macrosomia with severe and persistent hyperinsulinemic hypoglycemia as well as MODY in three families. RESEARCH DESIGN AND METHODSPatient 1. Patient 1 was born at 39 weeks' gestation with a birth weight of 5.9 kg after a vaginal delivery. The delivery was complicated with a prolonged second stage and shoulder dystocia. After delivery, the baby developed severe symptomatic hypoglycemia (jitteriness and irritability with a blood glucose concentration of 0.8 mmol/l). He required a continuous infusion of 25% dextrose delivering 25 mg ⅐ kg Ϫ1 ⅐ min Ϫ1 glucose, as well as an infusion of glucagon to maintain normoglycemia. Biochemical analysis showed an in...
SummaryFibroblast growth factor 21 (FGF21) is a hormone that has insulin-sensitizing properties. Some trials of FGF21 analogs show weight loss and lipid-lowering effects. Recent studies have shown that a common allele in the FGF21 gene alters the balance of macronutrients consumed, but there was little evidence of an effect on metabolic traits. We studied a common FGF21 allele (A:rs838133) in 451,099 people from the UK Biobank study, aiming to use the human allele to inform potential adverse and beneficial effects of targeting FGF21. We replicated the association between the A allele and higher percentage carbohydrate intake. We then showed that this allele is more strongly associated with higher blood pressure and waist-hip ratio, despite an association with lower total body-fat percentage, than it is with BMI or type 2 diabetes. These human phenotypes of variation in the FGF21 gene will inform research into FGF21’s mechanisms and therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.