Psi4 is a free and open-source ab initio electronic structure program providing Hartree-Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of Psi4's core functionality via Python. Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSchema data format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adoption of the MolSSI QCArchive Infrastructure project, make the latest version of Psi4 well suited to distributed computation of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in other quantum chemistry programs. File list (2) download file view on ChemRxiv psi4.pdf (4.37 MiB) download file view on ChemRxiv supplementary_material.pdf (297.86 KiB)
Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.
<div> <div> <div> <p>Psi4 is a free and open-source ab initio electronic structure program providing Hartree–Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of Psi4’s core functionality via Python. Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSchema data format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adoption of the MolSSI QCArchive Infrastructure project, make the latest version of Psi4 well suited to distributed computation of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in other quantum chemistry programs. </p> </div> </div> </div>
A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range.
Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems. As the hardware and software have evolved, so have the theoretical and computational chemistry methods and algorithms. Parallel computers clearly changed the common computing paradigm in the late 1970s and 80s, and the field has again seen a paradigm shift with the advent of graphical processing units. This review explores the challenges and some of the solutions in transforming software from the terascale to the petascale and now to the upcoming exascale computers. While discussing the field in general, NWChem and its redesign, NWChemEx, will be highlighted as one of the early co-design projects to take advantage of massively parallel computers and emerging software standards to enable large scientific challenges to be tackled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.