This paper introduces a framework for real-time simulation and rendering of crowds navigating in a virtual environment. The solution first consists in a specific environment preprocessing technique giving rise to navigation graphs, which are then used by the navigation and simulation tasks. Second, navigation planning interactively provides various solutions to the user queries, allowing to spread a crowd by individualizing trajectories. A scalable simulation model enables the management of large crowds, while saving computation time for rendering tasks. Pedestrian graphical models are divided into three rendering fidelities ranging from billboards to dynamic meshes, allowing close-up views of detailed digital actors with a large variety of locomotion animations. Examples illustrate our method in several environments with crowds of up to 35 000 pedestrians with real-time performance.
Real-time crowd simulations are realistic only if each human instance looks unique. A proposed solution varies the shape of human instances by attaching accessories. It also modifies the instances' appearance with a generic technique based on segmentation maps that can generate detailed color variety and patterns.
Real-time crowd motion planning requires fast, realistic methods for path planning as well as obstacle avoidance. In a previous work (Morini et al. in Cyberworlds International Conference, pp. 144-151, 2007), we introduced a hybrid architecture to handle real-time motion planning of thousands of pedestrians. In this article, we present an extended version of our architecture, introducing two new features: an improved short-term collision avoidance algorithm, and simple efficient group behavior for crowds. Our approach allows the use of several motion planning algorithms of different precision for regions of varied interest. Pedestrian motion continuity is ensured when switching between such algorithms. To assess our architecture, several performance tests have been conducted, as well as a subjective test demonstrating the impact of using groups. Our results show that the architecture can plan motion in real time for several thousands of characters.
The YaQ software platform is a complete system dedicated to real-time crowd simulation and rendering. Fitting multiple application domains, such as video games and VR, YaQ aims to provide efficient algorithms to generate crowds comprising up to thousands of varied virtual humans navigating in large-scale, global environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.