Enterobacteria, especially Escherichia coli, are abundant in patients with inflammatory bowel disease or colorectal cancer (CRC). However, it is unclear whether cancer is promoted by inflammation-induced expansion of E. coli and/or changes in expression of specific microbial genes. Here we use longitudinal (2, 12 and 20 weeks) 16S rRNA sequencing of luminal microbiota from ex-germ free mice to show that inflamed Il10−/− mice maintain a higher abundance of Enterobacteriaceae than healthy wild-type mice. Experiments with mono-colonized Il10−/− mice reveal that host inflammation is necessary for E. coli cancer-promoting activity. RNA-sequence analysis indicates significant changes in E. coli gene catalogue in Il10−/− mice, with changes mostly driven by adaptation to the intestinal environment. Expression of specific genes present in the tumor-promoting E. coli pks island are modulated by inflammation/CRC development. Thus, progression of inflammation in Il10−/− mice supports Enterobacteriaceae and alters a small subset of microbial genes important for tumor development.
Maternal transmission and cage effects are powerful confounding factors in microbiome studies. To assess the consequences of cage microenvironment on the mouse gut microbiome, two groups of germ-free (GF) wild-type (WT) mice, one gavaged with a microbiota harvested from adult WT mice and another allowed to acquire the microbiome from the cage microenvironment, were monitored using Illumina 16S rRNA sequencing over a period of 8 weeks. Our results revealed that cage effects in WT mice moved from GF to specific pathogen free (SPF) conditions take several weeks to develop and are not eliminated by the initial gavage treatment. Initial gavage influenced, but did not eliminate a successional pattern in which Proteobacteria became less abundant over time. An analysis in which 16S rRNA sequences are mapped to the closest sequenced whole genome suggests that the functional potential of microbial genomes changes significantly over time shifting from an emphasis on pathogenesis and motility early in community assembly to metabolic processes at later time points. Functionally, mice allowed to naturally acquire a microbial community from their cage, but not mice gavaged with a common biome, exhibit a cage effect in Dextran Sulfate Sodium-induced inflammation. Our results argue that while there are long-term effects of the founding community, these effects are mitigated by cage microenvironment and successional community assembly over time, which must both be explicitly considered in the interpretation of microbiome mouse experiments.
Background Immune checkpoint inhibitors (ICIs) have been incorporated into various clinical oncology guidelines for systemic treatment of advanced non-small cell lung cancers (aNSCLC). However, less than 50% (and 20%) of the patients responded to the therapy as a first (or second) line of therapy. PD-L1 immunohistochemistry (IHC) is an extensively studied biomarker of response to ICI, but results from this test have equivocal predictive power. In order to identify other biomarkers that support clinical decision-making around whether to treat with ICIs or not, we performed a retrospective study of patients with aNSCLC who underwent ICI-based therapy in the Mount Sinai Health System between 2014 and 2019. Methods We analyzed data from standard laboratory tests performed in patients as a part of the routine clinical workup during treatment, including complete blood counts (CBC) and a comprehensive metabolic panel (CMP), to correlate test results with clinical response and survival. Results Of 11,138 NSCLC patients identified, 249 had been treated with ICIs. We found associations between high neutrophil-to-lymphocyte ratio (NLR ≥ 5) and poor survival in ICI-treated NSCLC. We further observed that sustained high NLR after initiation of treatment had a more profound impact on survival than baseline NLR, regardless of PD-L1 status. Hazard ratios when comparing patients with NLR ≥ 5 vs. NLR < 5 are 1.7 (p = 0.02), 3.4 (p = 4.2 × 10− 8), and 3.9 (p = 1.4 × 10− 6) at baseline, 2–8 weeks, and 8–14 weeks after treatment start, respectively. Mild anemia, defined as hemoglobin (HGB) less than 12 g/dL was correlated with survival independently of NLR. Finally, we developed a composite NLR and HGB biomarker. Patients with pretreatment NLR ≥ 5 and HGB < 12 g/dL had a median overall survival (OS) of 8.0 months (95% CI 4.5–11.5) compared to the rest of the cohort with a median OS not reached (95% CI 15.9-NE, p = 1.8 × 10− 5), and a hazard ratio of 2.6 (95% CI 1.7–4.1, p = 3.5 × 10− 5). Conclusions We developed a novel composite biomarker for ICI-based therapy in NSCLC based on routine CBC tests, which may provide meaningful clinical utility to guide treatment decision. The results suggest that treatment of anemia to elevate HGB before initiation of ICI therapy may improve patient outcomes or the use of alternative non-chemotherapy containing regimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.