ObjectivesThe aim of this study was to estimate lowest possible treatment costs for four novel cancer drugs, hypothesising that generic manufacturing could significantly reduce treatment costs.SettingThis research was carried out in a non-clinical research setting using secondary data.ParticipantsThere were no human participants in the study. Four drugs were selected for the study: bortezomib, dasatinib, everolimus and gefitinib. These medications were selected according to their clinical importance, novel pharmaceutical actions and the availability of generic price data.Primary and secondary outcome measuresTarget costs for treatment were to be generated for each indication for each treatment. The primary outcome measure was the target cost according to a production cost calculation algorithm. The secondary outcome measure was the target cost as the lowest available generic price; this was necessary where export data were not available to generate an estimate from our cost calculation algorithm. Other outcomes included patent expiry dates and total eligible treatment populations.ResultsTarget prices were £411 per cycle for bortezomib, £9 per month for dasatinib, £852 per month for everolimus and £10 per month for gefitinib. Compared with current list prices in England, these target prices would represent reductions of 74–99.6%. Patent expiry dates were bortezomib 2014–22, dasatinib 2020–26, everolimus 2019–25 and gefitinib 2017. The total global eligible treatment population in 1 year is 769 736.ConclusionsOur findings demonstrate that affordable drug treatment costs are possible for novel cancer drugs, suggesting that new therapeutic options can be made available to patients and doctors worldwide. Assessing treatment cost estimations alongside cost-effectiveness evaluations is an important area of future research.
ObjectiveTo calculate sustainable generic prices for 4 tyrosine kinase inhibitors (TKIs).BackgroundTKIs have proven survival benefits in the treatment of several cancers, including chronic myeloid leukaemia, breast, liver, renal and lung cancer. However, current high prices are a barrier to treatment. Mass production of low-cost generic antiretrovirals has led to over 13 million people being on HIV/AIDS treatment worldwide. This analysis estimates target prices for generic TKIs, assuming similar methods of mass production.MethodsFour TKIs with patent expiry dates in the next 5 years were selected for analysis: imatinib, erlotinib, lapatinib and sorafenib. Chemistry, dosing, published data on per-kilogram pricing for commercial transactions of active pharmaceutical ingredient (API), and quotes from manufacturers were used to estimate costs of production. Analysis included costs of excipients, formulation, packaging, shipping and a 50% profit margin. Target prices were compared with current prices. Global numbers of patients eligible for treatment with each TKI were estimated.ResultsAPI costs per kg were $347–$746 for imatinib, $2470 for erlotinib, $4671 for lapatinib, and $3000 for sorafenib. Basing on annual dose requirements, costs of formulation/packaging and a 50% profit margin, target generic prices per person-year were $128–$216 for imatinib, $240 for erlotinib, $1450 for sorafenib, and $4020 for lapatinib. Over 1 million people would be newly eligible to start treatment with these TKIs annually.ConclusionsMass generic production of several TKIs could achieve treatment prices in the range of $128–$4020 per person-year, versus current US prices of $75161–$139 138. Generic TKIs could allow significant savings and scaling-up of treatment globally, for over 1 million eligible patients.
BackgroundUniversities are significant contributors to research and technologies in health; however, the health needs of the world’s poor are historically neglected in research. Medical discoveries are frequently licensed exclusively to one producer, allowing a monopoly and inequitable pricing. Similarly, research is often published in ways that make it inaccessible. Universities can adopt policies and practices to overcome neglect and ensure equitable access to research and its products.MethodsFor 25 United Kingdom universities, data on health research funding were extracted from the top five United Kingdom funders’ databases and coded as research on neglected diseases (NDs) and/or health in low- and lower-middle-income countries (hLLMIC). Data on intellectual property licensing policies and practices and open-access policies were obtained from publicly available sources and by direct contact with universities. Proportions of research articles published as open-access were extracted from PubMed and PubMed Central.ResultsAcross United Kingdom universities, the median proportion of 2011–2014 health research funds attributable to ND research was 2.6% and for hLLMIC it was 1.7%. Overall, 79% of all ND funding and 74% of hLLMIC funding were granted to the top four institutions within each category. Seven institutions had policies to ensure that technologies developed from their research are affordable globally. Mostly, universities licensed their inventions to third parties in a way that confers monopoly rights. Fifteen institutions had an institutional open-access publishing policy; three had an institutional open-access publishing fund. The proportion of health-related articles with full-text versions freely available online ranged from 58% to 100% across universities (2012–2013); 23% of articles also had a creative commons CC-BY license.ConclusionThere is wide variation in the amount of global health research undertaken by United Kingdom universities, with a large proportion of total research funding awarded to a few institutions. To meet a level of research commitment in line with the global burden of disease, most universities should seek to expand their research activity. Most universities do not license their intellectual property in a way that is likely to encourage access in resource-poor settings, and lack policies to do so. The majority of recent research publications are published open-access, but not as gold standard (CC-BY) open-access.Electronic supplementary materialThe online version of this article (doi:10.1186/s12961-016-0148-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.