Social investment programs are designed to provide opportunities to the less privileged so that they can contribute to the socioeconomic development of society. Stakeholders in social safety net programs (SSNPs) target vulnerable groups, such as the urban poor, women, the unemployed, and the elderly, with initiatives that have a transformative impact. Inadequate policy awareness remains a challenge, resulting in low participation rates in SSNPs. To achieve all-inclusive development, deliberate policies and programs that target this population have to be initiated by government, corporate bodies, and public-minded individuals. Artificial intelligence (AI) techniques could play an important role in improving the managerial decision support and policy-making process of SSNPs and increasing the social resilience of urban populations. To enhance managerial decision-making in social investment programs, we used a Bayesian network to develop an intelligent decision support system called the Social Safety Net Expert System (SSNES). Using the SSNES, we provide an advisory system to stakeholders who make management decisions, which clearly demonstrates the efficacy of SSNPs and inclusive development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.