Purpose: This paper is to describe development of the features and functions of Repast Simphony, the widely used, free, and open source agent-based modeling environment that builds on the Repast 3 library. Repast Simphony was designed from the ground up with a focus on well-factored abstractions. The resulting code has a modular architecture that allows individual components such as networks, logging, and time scheduling to be replaced as needed. The Repast family of agentbased modeling software has collectively been under continuous development for more than 10 years. Method: Includes reviewing other free and open-source modeling libraries and environments as well as describing the architecture of Repast Simphony. The architectural description includes a discussion of the Simphony application framework, the core module, ReLogo, data collection, the geographical information system, visualization, freeze drying, and third party application integration. Results: Include a review of several Repast Simphony applications and brief tutorial on how to use Repast Simphony to model a simple complex adaptive system. Conclusions: We discuss opportunities for future work, including plans to provide support for increasingly large-scale modeling efforts.
The 2019 novel coronavirus, SARS-CoV-2, is an emerging pathogen of critical significance to international public health. Knowledge of the interplay between molecular-scale virus-receptor interactions, single-cell viral replication, intracellular-scale viral transport, and emergent tissue-scale viral propagation is limited. Moreover, little is known about immune system-virus-tissue interactions and how these can result in low-level (asymptomatic) infections in some cases and acute respiratory distress syndrome (ARDS) in others, particularly with respect to presentation in different age groups or pre-existing inflammatory risk factors like diabetes. A critical question for treatment and protection is why it appears that the severity of infection may correlate with the initial level of virus exposure. Given the nonlinear interactions within and among each of these processes, multiscale simulation models can shed light on the emergent dynamics that lead to divergent outcomes, identify actionable "choke points" for pharmacologic interactions, screen potential therapies, and identify potential biomarkers that differentiate response dynamics. Given the complexity of the problem and the acute need for an actionable model to guide therapy discovery and optimization, we introduce a prototype of a multiscale model of SARS-CoV-2 dynamics in lung and intestinal tissue that will be iteratively refined. The first prototype model was built and shared internationally as open source code and interactive, cloud-hosted executables in under 12 hours. In a sustained community effort, this model will integrate data and expertise across virology, immunology, mathematical biology, quantitative systems physiology, cloud and high performance computing, and other domains to accelerate our response to this critical threat to international health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.